We report on the phonon and thermal properties of thin films of tantalum diselenide (2H-TaSe2) obtained via the “graphene-like” mechanical exfoliation of crystals grown by chemical vapor transport. The ratio of the intensities of the Raman peak from the Si substrate and the E2g peak of TaSe2 presents a convenient metric for quantifying film thickness. The temperature coefficients for two main Raman peaks, A1g and E2g, are −0.013 and −0.0097 cm−1/oC, respectively. The Raman optothermal measurements indicate that the room temperature thermal conductivity in these films decreases from its bulk value of ∼16 W/mK to ∼9 W/mK in 45-nm thick films. The measurement of electrical resistivity of the field-effect devices with TaSe2 channels shows that heat conduction is dominated by acoustic phonons in these van der Waals films. The scaling of thermal conductivity with the film thickness suggests that the phonon scattering from the film boundaries is substantial despite the sharp interfaces of the mechanically cleaved samples. These results are important for understanding the thermal properties of thin films exfoliated from TaSe2 and other metal dichalcogenides, as well as for evaluating self-heating effects in devices made from such materials.

1.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
,
Science
306
,
666
669
(
2004
).
2.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
M. I.
Katsnelson
,
I. V.
Grigorieva
,
S. V.
Dubonos
, and
A. A.
Firsov
,
Nature
438
,
197
200
(
2005
).
3.
Y.
Zhang
,
Y.-W.
Tan
,
H. L.
Stormer
, and
P.
Kim
,
Nature
438
,
201
204
(
2005
).
4.
A. A.
Balandin
,
S.
Ghosh
,
W.
Bao
,
I.
Calizo
,
D.
Teweldebrhan
,
F.
Miao
, and
C. N.
Lau
,
Nano Lett.
8
,
902
907
(
2008
).
5.
S.
Ghosh
,
W.
Bao
,
D. L.
Nika
,
S.
Subrina
,
E. P.
Pokatilov
,
C. N.
Lau
, and
A. A.
Balandin
,
Nature Mater.
9
,
555
558
(
2010
).
6.
A. A.
Balandin
,
Nature Mater.
10
,
569
581
(
2011
).
7.
D. L.
Nika
and
A. A.
Balandin
,
J. Phys.: Condens. Matter
24
,
233203
(
2012
).
8.
A. K.
Geim
and
I. V.
Grigorieva
,
Nature
499
,
419
425
(
2013
).
9.
D.
Teweldebrhan
,
V.
Goyal
, and
A. A.
Balandin
,
Nano Lett.
10
,
1209
1218
(
2010
).
10.
R.
Mas-Balleste
,
C.
Gomez-Navarro
,
J.
Gomez-Herrero
, and
F.
Zamora
,
Nanoscale
3
,
20
30
(
2011
).
11.
K. J.
Koski
and
Y.
Cui
,
ACS Nano
7
,
3739
3743
(
2013
).
12.
M.
Xu
,
T.
Liang
,
M.
Shi
, and
H.
Chen
,
Chem. Rev.
113
,
3766
3798
(
2013
).
13.
V.
Goyal
,
S.
Subrina
,
D. L.
Nika
, and
A. A.
Balandin
,
Appl. Phys. Lett.
97
,
031904
(
2010
).
14.
K. M. F.
Shahil
,
M. Z.
Hossain
,
D.
Teweldebrhan
, and
A. A.
Balandin
,
Appl. Phys. Lett.
96
,
153103
(
2010
).
15.
M. Z.
Hossain
,
S. L.
Rumyantsev
,
K. M. F.
Shahil
,
D.
Teweldebrhan
,
M.
Shur
, and
A. A.
Balandin
,
ACS Nano
5
,
2657
2663
(
2011
).
16.
J.
Khan
,
C. M.
Nolen
,
D.
Teweldebrhan
,
D.
Wickramaratne
,
R. K.
Lake
, and
A. A.
Balandin
,
Appl. Phys. Lett.
100
,
043109
(
2012
).
17.
M.
Chhowalla
,
H. S.
Shin
,
G.
Eda
,
L.-J.
Li
,
K. P.
Loh
, and
H.
Zhang
,
Nat. Chem.
5
,
263
275
(
2013
).
18.
G.
Grüner
,
Rev. Mod. Phys.
60
,
1129
1181
(
1988
).
19.
P.
Goli
,
J.
Khan
,
D.
Wickramaratne
,
R. K.
Lake
, and
A. A.
Balandin
,
Nano Lett.
12
,
5941
5945
(
2012
).
20.
B. E.
Brown
and
D. J.
Beerntsen
,
Acta Crystallogr.
18
,
31
36
(
1965
).
21.
Preparation and crystal growth of materials with layered structures
,” in
Physics and Chemistry of Materials with Layered Structures
, edited by
R. M. A.
Lieth
(
D. Reidel Publishing Company
:
Dordrecht, Holland
,
1977
), Vol. 1.
22.
J. A.
Wilson
and
A. D.
Yoffe
,
Adv. Phys.
18
,
193
335
(
1969
).
23.
K.
Selte
,
E.
Bjerkelund
, and
A.
Kjekshus
,
J. Less-Common Met.
11
,
14
30
(
1966
).
24.
M.
Binnewies
,
R.
Glaum
,
M.
Schmidt
, and
P.
Schmidt
,
Z. Anorg. Allg. Chem.
639
,
219
229
(
2013
).
25.
L. J.
Li
,
Y. P.
Sun
,
X. D.
Zhu
,
B. S.
Wang
,
X. B.
Zhu
,
Z. R.
Yang
, and
W. H.
Song
,
Solid State Commun.
150
,
2248
2252
(
2010
).
26.
E.
Bjerkelund
and
A.
Kjekshus
,
Acta Chem. Scand.
21
,
513
526
(
1967
).
27.
R.
Huisman
,
F.
Kadijk
, and
F.
Jellinek
,
J. Less-Common Met.
21
,
187
193
(
1970
).
28.
K.
Wang
,
Z.
Liu
,
T. H.
Cruz
,
M.
Salmeron
, and
H.
Liang
,
J. Phys. Chem. A
114
,
2489
2497
(
2010
).
29.
H. P.
Waldvogel
and
M.
Schärli
,
J. Electron Spectrosc. Relat. Phenom.
34
,
115
128
(
1984
).
30.
E. F.
Steigmeier
,
G.
Harbeke
,
H.
Auderset
, and
F. J.
DiSalvo
,
Solid State Commun.
20
,
667
671
(
1976
).
31.
J. A.
Holy
,
M. V.
Klein
,
W. L.
McMillan
, and
S. F.
Meyer
,
Phys. Rev. Lett.
37
,
1145
1148
(
1976
).
32.
H.
Li
,
G.
Lu
,
Y.
Wang
,
Z.
Yin
,
C.
Cong
,
Q.
He
,
L.
Wang
,
F.
Ding
,
T.
Yu
, and
H.
Zhang
,
Small
9
,
1974
1981
(
2013
).
33.
A.
Castellanos-Gomez
,
E.
Navarro-Moratalla
,
G.
Mokry
,
J.
Quereda
,
E.
Pinilla-Cienfuegos
,
N.
Agraït
,
H. J.
Zant
,
E.
Coronado
,
G.
Steele
, and
G.
Rubio-Bollinger
,
Nano Res.
6
,
191
199
(
2013
).
34.
S.
Chen
,
Q.
Wu
,
C.
Mishra
,
J.
Kang
,
H.
Zhang
,
K.
Cho
,
W.
Cai
,
A. A.
Balandin
, and
R. S.
Ruoff
,
Nature Mater.
11
,
203
207
(
2012
).
35.
M. S.
Dresselhaus
and
G.
Dresselhaus
,
Adv. Phys.
30
,
139
326
(
1981
).
36.
J.-P.
Issi
, “
Transport properties of metal chloride acceptor graphite intercalation compounds
,” in
Springer Series in Materials Science
(
Springer
,
1992
), Vol.
18
, p.
195
.
37.
L. H.
Brixner
and
G.
Teufer
,
Inorg. Chem.
2
,
992
996
(
1963
).
38.
J. M. E.
Harper
,
T. H.
Geballe
, and
F. J.
DiSalvo
,
Phys. Rev. B
15
,
2943
2951
(
1977
).
39.
M. D.
Núñez-Regueiro
,
J. M.
Lopez-Castillo
, and
C.
Ayache
,
Phys. Rev. Lett.
55
,
1931
1934
(
1985
).
You do not currently have access to this content.