Ferroelectric lead zirconate titanate [Pb(ZrxTi1-xO)3, (PZT x:1-x)] has received considerable interest for applications related to uncooled infrared devices due to its large pyroelectric figures of merit near room temperature, and the fact that such devices are inherently ac coupled, allowing for simplified image post processing. For ferroelectric films made by industry-standard deposition techniques, stresses develop in the PZT layer upon cooling from the processing/growth temperature due to thermal mismatch between the film and the substrate. In this study, we use a non-linear thermodynamic model to investigate the pyroelectric properties of polycrystalline PZT thin films for five different compositions (PZT 40:60, PZT 30:70, PZT 20:80, PZT 10:90, PZT 0:100) on silicon as a function of processing temperature (25–800 °C). It is shown that the in-plane thermal stresses in PZT thin films alter the out-of-plane polarization and the ferroelectric phase transformation temperature, with profound effect on the pyroelectric properties. PZT 30:70 is found to have the largest pyroelectric coefficient (0.042 μC cm−2 °C−1, comparable to bulk values) at a growth temperature of 550 °C; typical to what is currently used for many deposition processes. Our results indicate that it is possible to optimize the pyroelectric response of PZT thin films by adjusting the Ti composition and the processing temperature, thereby, enabling the tailoring of material properties for optimization relative to a specific deposition process.

1.
R. W.
Whatmore
,
Rep. Prog. Phys.
49
,
1335
(
1986
).
2.
R. W.
Whatmore
,
J. Electroceram.
13
,
139
(
2004
).
3.
P.
Muralt
,
Rep. Prog. Phys.
64
,
1339
(
2001
).
4.
C. H.
Tsai
,
Y. W.
Bai
,
C. A.
Chu
,
C. Y.
Chung
, and
M. B.
Lin
,
IEEE Trans. Consum. Electron.
57
,
1157
(
2011
).
5.
R. W.
Whatmore
,
Ferroelectrics
118
,
241
(
1991
).
6.
J.
Zhang
,
M. W.
Cole
, and
S. P.
Alpay
,
J. Appl. Phys.
108
,
054103
(
2010
).
7.
S. P.
Alpay
,
I. B.
Misirlioglu
,
A.
Sharma
, and
Z. G.
Ban
,
J. Appl. Phys.
95
,
8118
(
2004
).
8.
D. G.
Schlom
,
L. Q.
Chen
,
C. B.
Eom
,
K. M.
Rabe
,
K. S.
Streiffer
, and
J. M.
Triscone
,
Annu. Rev. Mater. Res.
37
,
589
(
2007
).
9.
S.
Trolier-McKinstry
and
P.
Muralt
,
J. Electroceram.
12
,
7
(
2004
).
10.
M. B.
Okatan
and
S. P.
Alpay
,
Appl. Phys. Lett.
95
,
092902
(
2009
).
11.
I. B.
Misirlioglu
,
S. P.
Alpay
,
M.
Aindow
, and
V.
Nagarajan
,
Appl. Phys. Lett.
88
,
102906
(
2006
).
12.
Q.
Zhang
and
R. W.
Whatmore
,
J. Appl. Phys.
94
,
5228
(
2003
).
13.
N. M.
Shorrocks
,
A.
Patel
,
M. J.
Walker
, and
A. D.
Parsons
,
Microelectron. Eng.
29
,
59
(
1995
).
14.
Z. G.
Ban
and
S. P.
Alpay
,
Appl. Phys. Lett.
82
,
3499
(
2003
).
15.
M. A.
Todd
,
P. A.
Manning
,
P. P.
Donohue
,
A. G.
Brown
, and
R.
Watton
,
Proc. SPIE
4130
,
128
139
(
2000
).
16.
M. H.
Lee
,
R.
Guo
, and
A. S.
Bhalla
,
J. Electroceram.
2
,
229
(
1998
).
17.
N.
Setter
and
R.
Waser
,
Acta Mater.
48
,
151
(
2000
).
18.
R. W.
Whatmore
,
P.
Kirby
,
A.
Patel
,
N. M.
Shorrocks
,
T.
Bland
, and
M.
Walker
,
Science and Technology of Electroceramic Thin Films
(
Kluwer Academic Publishers
,
1995
), pp.
383
397
.
19.
A.
Sharma
,
Z. G.
Ban
,
S. P.
Alpay
, and
J. V.
Mantese
,
J. Appl. Phys.
95
,
3618
(
2004
).
20.
P. E.
Janolin
,
J. Mater. Sci.
44
,
5025
(
2009
).
21.
M. B.
Kelman
,
P. C.
McIntyre
,
B. C.
Hendrix
,
S. M.
Bilodeau
, and
J. F.
Roeder
,
J. Appl. Phys.
93
,
9231
(
2003
).
22.
M.
Dawber
,
K. M.
Rabe
, and
J. F.
Scott
,
Rev. Mod. Phys.
77
,
1083
(
2005
).
23.
N.
Setter
,
D.
Damjanovic
,
L.
Eng
,
G.
Fox
,
S.
Gevorgian
,
S.
Hong
,
A.
Kingon
,
H.
Kohlstedt
,
N. Y.
Park
,
G. B.
Stephenson
,
I.
Stolitchnov
,
A. K.
Taganstev
,
D. V.
Taylor
,
T.
Yamada
, and
S.
Streiffer
,
J. Appl. Phys.
100
,
051606
(
2006
).
24.
R. J.
Ong
,
D. A.
Payne
, and
N. R.
Sottos
,
J. Am. Ceram. Soc.
88
,
2839
(
2005
).
25.
H. X.
Cao
,
V. C.
Lo
, and
Z. Y.
Li
,
J. Appl. Phys.
101
,
014113
(
2007
).
26.
Y.
Zheng
,
B.
Wang
, and
C. H.
Woo
,
Appl. Phys. Lett.
89
,
062904
(
2006
).
27.
P.
Muralt
,
J. Micromech. Microeng.
10
,
136
(
2000
).
28.
R.
Bruchhaus
,
D.
Pitzer
,
R.
Primig
,
M.
Schreiter
,
W.
Wersing
,
N.
Neumann
,
N.
Hess
,
J.
Vollheim
,
R.
Kohler
, and
M.
Simon
,
Integr. Ferroelectr.
17
,
369
(
1997
).
29.
J.
Karthik
and
L. W.
Martin
,
Phys. Rev. B
84
,
024102
(
2011
).
30.
J.
Karthik
,
J. C.
Agar
,
A. R.
Damodaran
, and
L. W.
Martin
,
Phys. Rev. Lett.
109
,
257602
(
2012
).
31.
J. D.
Zook
and
S. T.
Liu
,
J. Appl. Phys.
49
,
4604
(
1978
).
32.
M.
Kohli
,
A.
Seifert
, and
P.
Muralt
,
Integr. Ferroelectr.
22
,
453
(
1998
).
33.
R.
Kohler
,
G.
Suchaneck
,
P.
Padmini
,
T.
Sandner
,
G.
Gerlach
, and
G.
Hofmann
,
Ferroelectrics
225
,
57
(
1999
).
34.
R.
Kohler
,
P.
Padmini
,
G.
Gerlach
,
G.
Hofmann
, and
R.
Bruchhaus
,
Integr. Ferroelectr.
22
,
383
(
1998
).
35.
Q.
Zhang
and
R. W.
Whatmore
,
J. Phys. D Appl. Phys.
34
,
2296
(
2001
).
36.
Q.
Tan
,
W.
Zhang
,
C.
Xue
,
J.
Xiong
,
J.
Liu
,
J.
Li
, and
T.
Liang
,
Microelectron. J.
40
,
58
(
2009
).
37.
W.
Liu
,
J. S.
Ko
, and
W.
Zhu
,
Thin Solid Films
371
,
254
(
2000
).
38.
Y.
Guo
,
D.
Akai
,
K.
Swada
, and
M.
Ishida
,
Appl. Phys. Lett.
90
,
232908
(
2007
).
39.
J. S.
Ko
,
W.
Liu
,
W.
Zhu
, and
B. M.
Kwak
,
Solid-State Electron.
46
,
1155
(
2002
).
40.
Z.
Huang
,
Q.
Zhang
, and
R. W.
Whatmore
,
J. Appl. Phys.
85
,
7355
(
1999
).
41.
L. L.
Sun
,
O. K.
Tan
, and
W. G.
Zhu
,
J. Appl. Phys.
99
,
094108
(
2006
).
42.
S.
Corkovic
and
Q.
Zhang
,
J. Appl. Phys.
105
,
061610
(
2009
).
43.
L. L.
Sun
,
W. G.
Liu
,
O. K.
Tan
, and
W.
Zhu
,
Mater. Sci. Eng., B
99
,
173
(
2003
).
44.
S. H.
Kang
,
H. J.
Lee
,
J. L.
Kim
,
I. W.
Kim
,
E. C.
Park
,
J. S.
Lee
, and
S. S.
Yi
,
Ferroelectrics
328
,
47
(
2005
).
45.
G.
Gerlach
,
G.
Suchaneck
,
R.
Kohler
,
T.
Sandner
,
P.
Padmini
,
R.
Krawietz
,
W.
Pompe
,
J.
Frey
,
O.
Jost
, and
A.
Schonecker
,
Ferroelectrics
230
,
109
(
1999
).
46.
M. J.
Haun
,
Z. Q.
Zhuang
,
E.
Furman
,
S. J.
Jang
, and
L. E.
Cross
,
Ferroelectrics
99
,
45
(
1989
).
47.
N. A.
Pertsev
,
V.
Kukhar
,
H.
Kohlstedt
, and
R.
Waser
,
Phys. Rev. B
67
,
054107
(
2003
).
48.
B.
Willing
,
M.
Kohli
,
P.
Muralt
, and
O.
Oehler
,
Infrared Phys. Technol.
39
,
443
(
1998
).
49.
Y.
Okada
and
Y.
Tokumaru
,
J. Appl. Phys.
56
,
314
(
1984
).
50.
M. J.
Haun
,
E.
Furman
,
H. A.
McKinstry
, and
L. E.
Cross
,
Ferroelectrics
99
,
27
(
1989
).
51.
T.
Ohno
,
H.
Suzuki
,
D.
Fu
,
M.
Takahashi
,
T.
Ota
, and
K.
Ishikawa
,
Ceram. Int.
30
,
1487
(
2004
).
52.
R. S.
Batzer
,
B. M.
Yen
,
D.
Liu
,
H.
Chen
,
H.
Kubo
, and
G. R.
Bai
,
J. Appl. Phys.
80
,
6235
(
1996
).
53.
D. A.
Tenne
,
A.
Soukiassian
,
X. X.
Xi
,
T. R.
Taylor
,
P. J.
Hansen
,
J. S.
Speck
, and
R. A.
York
,
Appl. Phys. Lett.
85
,
4124
(
2004
).
54.
H. X.
Cao
,
V. C.
Lo
, and
W. W. Y.
Chung
,
J. Appl. Phys.
99
,
024103
(
2006
).
55.
L. Q.
Chen
,
J. Am. Ceram. Soc.
91
,
1835
(
2008
).
56.
F.
Jin
,
G. W.
Auner
,
R.
Naik
,
N. W.
Schubring
,
J. V.
Mantese
,
A. B.
Catalan
, and
A. L.
Micheli
,
Appl. Phys. Lett.
73
,
2838
(
1998
).
57.
N. W.
Schubring
,
J. V.
Mantese
,
A. L.
Micheli
,
A. B.
Catalan
, and
R. J.
Lopez
,
Phys. Rev. Lett.
68
,
1778
(
1992
).
58.
Y.
Ivry
,
V.
Lyahovitskaya
,
I.
Zon
,
I.
Lubomirsky
,
E.
Wachtel
, and
A. L.
Roytburd
,
Appl. Phys. Lett.
90
,
172905
(
2007
).
59.
G. L.
Brennecka
,
W.
Huebner
,
B. A.
Tuttle
, and
P. G.
Clem
,
J. Am. Ceram. Soc.
87
,
1459
(
2004
).
60.
S.
Utsugi
,
T.
Fujisawa
,
Y.
Ehara
,
T.
Yamada
,
M.
Matsushima
,
H.
Morioka
, and
H.
Funakubo
,
Appl. Phys. Lett.
96
,
102905
(
2010
).
61.
S.
Trolier-Mckinstry
,
J. F.
Shepard
, Jr.
,
J. L.
Lacey
,
T.
Su
,
G.
Zavala
, and
J.
Fendler
,
Ferroelectrics
206
,
381
(
1998
).
62.
J. F.
Shepard
,
S.
Trolier-McKinstry
,
M.
Hendrickson
, and
R.
Zeto
,
in Materials of Smart Systems II
, edited by
E. P.
George
,
R.
Gotthardt
,
K.
Otsuka
,
S.
Trolier-McKinstry
, and
M.
WunFogle
(Mater. Res. Soc. Symp. Proc.,
Boston
,
1997
), Vol.
459
, pp.
47
51
.
63.
Q. Y.
Qiu
,
S. P.
Alpay
, and
V.
Nagarajan
,
J. Appl. Phys.
107
,
114105
(
2010
).
64.
G.
Akcay
,
I. B.
Misirlioglu
, and
S. P.
Alpay
,
J. Appl. Phys.
101
,
104110
(
2007
).
65.
Q. Y.
Qiu
,
V.
Nagarajan
, and
S.
Alpay
,
Phys. Rev. B
78
,
064117
(
2008
).
66.
H.
Funakubo
,
M.
Dekkers
,
A.
Sambri
,
S.
Gariglio
,
I.
Shklyarevskiy
, and
G.
Rijnders
,
MRS Bull.
37
,
1030
(
2012
).
67.
N. A.
Pertsev
and
V. G.
Koukhar
,
Phys. Rev. B
16
,
3722
(
2000
).
68.
S. P.
Alpay
and
A. L.
Roytburd
,
J. Appl. Phys.
83
,
4714
(
1998
).
69.
J.
Ricote
,
D.
Chateigner
,
L.
Pardo
,
M.
Alguero
,
J.
Mendiola
, and
M. L.
Calzada
,
Ferroelectrics
241
,
167
(
2000
).
70.
P.
Muralt
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
47
,
903
(
2000
).
71.
D.
Ambika
,
V.
Kumar
,
K.
Tomioka
, and
I.
Kanno
,
Adv. Mater. Lett.
3
,
102
(
2012
).
72.
Q.
Du
,
J.
Li
,
W.
Nothwang
, and
M. W.
Cole
,
Acta Mater.
54
,
2577
(
2006
).
73.
A. G.
Zembilgotov
,
N. A.
Pertsev
,
U.
Boüttger
, and
R.
Waser
,
Appl. Phys. Lett.
86
,
052903
(
2005
).
You do not currently have access to this content.