In this work, the structural and magnetic properties of Er-doped SnO2 (SnO2:Er) nanoparticles are reported. The SnO2:Er nanoparticles have been synthesized by a polymer precursor method with Er content from 1.0% to 10.0%. X-ray diffraction results indicate the formation of only the rutile-type structure in all samples. The estimated mean crystallite size shows a decrease from ∼10 to ∼4 nm when the Er content is increased from 1.0% to 10.0%. The particle size values have been corroborated by transmission electron microscopy technique. The thermal dependence of the magnetization is consistent with the 3+ oxidation state of erbium ions for all samples. A strong paramagnetic-like behavior coexisting with a ferromagnetic phase has been determined for samples with Er content below 5.0%. Above this concentration, only a paramagnetic behavior has been determined. Isothermal magnetization curves are consistent with the occurrence of long-range ferromagnetic order mediated by donor electrons forming bound magnetic polarons which overlap to produce a spin-split impurity band.

1.
C.
Van Komen
,
A.
Thurber
,
K. M.
Reddy
,
J.
Hays
, and
A.
Punnoose
,
J. Appl. Phys.
103
,
07D141
(
2008
).
2.
A. J.
Steckl
,
J.
Heikenfeld
,
M.
Garter
,
R.
Birkhahn
, and
D. S.
Lee
,
Compound Semicond.
6
,
48
(
2000
).
3.
J. M.
D.
Coey
,
A. P.
Douvalis
,
C. B.
Fitzgerald
, and
M.
Venkatesan
,
Appl. Phys. Lett.
84
,
1332
(
2004
).
4.
A.
Punnoose
and
J.
Hays
,
J. Appl. Phys.
97
,
10D321
(
2005
).
5.
C. B.
Fitzgerald
,
M.
Venkatesan
,
L. S.
Dorneles
,
R.
Gunning
,
P.
Stamenov
,
J. M. D.
Coey
,
P. A.
Stampe
,
R. J.
Kennedy
,
E. C.
Moreira
, and
U. S.
Sias
,
Phys. Rev. B
74
,
115307
(
2006
).
6.
N. H.
Hong
,
A.
Ruyter
,
W.
Prellier
,
J.
Sakai
, and
N. T.
Huong
,
J. Phys.: Condens. Matter
17
,
6533
(
2005
).
7.
H.
Kimura
,
T.
Fukumura
,
M.
Kawasaki
,
K.
Inaba
,
T.
Hasegawa
, and
H.
Koinuma
,
Appl. Phys. Lett.
80
,
94
(
2002
).
8.
X. L.
Wang
,
Z. X.
Daí
, and
Z.
Zeng
,
J. Phys.: Condens. Matter
20
,
045214
(
2008
).
9.
A.
Punnoose
,
J.
Hays
,
V.
Gopal
, and
V.
Shutthanandan
,
Appl. Phys. Lett.
85
,
1559
(
2004
).
10.
J.
Hays
,
A.
Punnoose
,
R.
Baldner
,
M. H.
Engelhard
,
J.
Peloquin
, and
K. M.
Reddy
,
Phys. Rev. B
72
,
075203
(
2005
).
11.
S.
Sambasivam
,
D.
Joseph
,
J.
Jeong
,
B.
Choi
,
K.
Lim
,
S.
Kim
, and
T.
Song
,
J. Nanopart. Res.
13
,
4623
(
2011
).
12.
R.
Adhikari
,
A. K.
Das
,
D.
Karmakar
, and
J.
Ghatak
,
J. Magn. Magn. Mater.
322
,
3631
3637
(
2010
).
13.
J.
Qi
,
D.
Gao
,
J.
Liu
,
W.
Yang
,
Q.
Wang
,
J.
Zhou
,
Y.
Yang
, and
J.
Liu
,
Appl. Phys. A
100
,
79
(
2010
).
14.
A.
Sundaresan
,
R.
Bhargavi
,
N.
Rangarajan
,
U.
Siddesh
, and
C. N. R.
Rao
,
Phys. Rev. B
74
,
161306
R
(
2006
).
15.
F. H.
Aragón
,
J. A. H.
Coaquira
,
P.
Hidalgo
,
S. L. M.
Brito
,
D.
Gouvêa
, and
R. H. R.
Castro
,
J. Phys.: Condens. Matter
22
,
496003
(
2010
).
16.
C. D.
Pemmaraju
and
S.
Sanvito
,
Phys. Rev. Lett.
94
,
217205
(
2005
).
17.
I. S.
Elfimov
,
S.
Yunoki
, and
G. A.
Sawatzky
,
Phys. Rev. Lett.
89
,
216403
(
2002
).
18.
J. M. D.
Coey
,
M.
Venkatesan
, and
C. B.
Fitzgerald
,
Nature Mater.
4
,
173
(
2005
).
19.
G. G.
Khan
,
S.
Ghosh
, and
K.
Mandal
,
J. Solid State Chem.
186
,
278
(
2012
).
20.
E. S.
Kumar
,
S.
Venkatesh
, and
M. S. R.
Rao
,
Appl. Phys. Lett.
96
,
232504
(
2010
).
21.
G. Z.
Xing
,
J. B.
Yi
,
D. D.
Wang
,
L.
Liao
,
T.
Yu
,
Z. X.
Shen
,
C. H. A.
Huan
,
T. C.
Sum
,
J.
Ding
, and
T.
Wu
,
Phys. Rev. B
79
,
174406
(
2009
).
22.
G.
Rahman
,
V. M.
Garcia-Suarez
, and
S. C.
Hong
,
Phys. Rev. B
78
,
184404
(
2008
).
23.
S. B.
Ogale
,
R. J.
Choudhary
,
J. P.
Buban
,
S. E.
Lofland
,
S. R.
Shinde
,
S. N.
Kale
,
V. N.
Kulkarni
,
J.
Higgins
,
C.
Lanci
,
J. R.
Simpson
,
N. D.
Browning
,
S.
Das Sarma
,
H. D.
Drew
,
R. L.
Greene
, and
T.
Venkatesan
,
Phys. Rev. Lett.
91
,
077205
(
2003
).
24.
C.
Kiliç
and
A.
Zunger
,
Phys. Rev. Lett.
88
,
095501
(
2002
).
25.
C.
Zener
,
Phys. Rev.
81
,
440
(
1951
).
26.
T.
Dietl
,
H.
Ohno
,
F.
Matsukura
,
J.
Cibert
, and
D.
Ferrand
,
Science
287
,
1019
(
2000
).
27.
A. H.
Macdonald
,
P.
Schiffer
, and
N.
Samarth
,
Nature Mater.
4
,
195
(
2005
).
28.
K.
Ueda
,
H.
Tabata
, and
T.
Kawai
,
Appl. Phys. Lett.
79
,
988
(
2001
).
29.
L. B.
Duan
,
W. G.
Chu
,
J.
Yu
,
Y. C.
Wang
,
L. N.
Zhang
,
G. Y.
Liu
,
J. K.
Liang
, and
G. H.
Rao
,
J. Magn. Magn. Mater.
320
,
1573
(
2008
).
30.
M.
Pechini
, U.S. patent 3,330,697 (
1967
).
31.
D.
Gouvêa
,
A.
Smith
, and
J. P.
Bonnet
,
Eur. J. Solid State Inorg. Chem.
33
,
1015
(
1996
).
32.
R. A.
Young
,
A.
Sakthivel
,
T. S.
Moss
, and
C. O.
Paiva-Santos
,
User's Guide to Program DBWS-9411
(
School of Physics, Georgia Institute of Technology
,
Atlanta
,
1995
).
33.
C. O.
Paiva-Santos
,
A. A.
Cavalheiro
,
M. A.
Zaghete
,
M.
Cilense
,
J. A.
Varela
,
M. T. S.
Giotto
, and
Y. P.
Mascarenhas
,
Adv. X-ray Anal.
44
,
38
(
2001
).
34.
F. H.
Aragón
,
J. A. H.
Coaquira
,
P.
Hidalgo
,
R.
Cohen
,
L. C. C. M.
Nagamine
,
S. W.
da Silva
,
P. C.
Morais
, and
H. F.
Brito
,
J. Nanopart. Res.
15
,
1343
(
2013
).
35.
P.
Hidalgo
,
R. H. R.
Castro
,
A. C. V.
Coelho
, and
D.
Gouvêa
,
Chem. Mater.
17
,
4149
(
2005
).
36.
R. H. R.
Castro
,
P.
Hidalgo
,
J. A. H.
Coaquira
,
J.
Bettini
,
D.
Zanchet
, and
D.
Gouvêa
,
Eur. J. Inorg. Chem.
11
,
2134
(
2005
).
37.
G. J.
Pereira
,
R. H. R.
Castro
,
P.
Hidalgo
, and
D.
Gouvêa
,
Appl. Surf. Sci.
195
,
277
(
2002
).
38.
F. H.
Aragón
, Ph.D. thesis,
University of Brasília
, Brasília-Brazil,
2013
.
39.
X.
Wang
,
J.
Xu
,
B.
Zhang
,
H.
Yu
,
J.
Wang
,
X.
Zhang
,
J.
Yu
, and
Q.
Li
,
Adv. Mater.
18
,
2476
(
2006
).
40.
X.
Wang
,
B.
Wan
,
K.
Zhang
,
B.
Zhao
,
Z.
Li
,
X.
Wan
,
F.
Song
,
B.
Liu
,
X.
Xiu
,
Y.
Xu
,
Y.
Shi
, and
R.
Zhang
,
J. Phys. Chem. C
117
,
18258
(
2013
).
You do not currently have access to this content.