Lead zirconate titanate (PZT) multilayer actuators with an interdigital electrode design were studied under high electric fields (3 and 6 kV/mm) in a unipolar cycling mode. A 100 Hz sine wave was used in cycling. Five specimens tested under 6 kV/mm failed from 3.8 × 105 to 7 × 105 cycles, whereas three other specimens tested under 3 kV/mm were found to be still functional after 108 cycles. Variations in piezoelectric and dielectric responses of the tested specimens were observed during the fatigue test, depending on the measuring and cycling conditions. Selected fatigued and damaged actuators were characterized using an impedance analyzer or small signal measurement. Furthermore, involved fatigue and failure mechanisms were investigated using scanning acoustic microscope and scanning electron microscope. The extensive cracks and porous regions were revealed across the PZT layers on the cross sections of a failed actuator. The results from this study have demonstrated that the high-field cycling can accelerate the fatigue of PZT stacks as long as the partial discharge is controlled. The small signal measurement can also be integrated into the large signal measurement to characterize the fatigue response of PZT stacks in a more comprehensive basis. The former can further serve as an experimental method to test and monitor the behavior of PZT stacks.

1.
K.
Uchino
,
Piezoelectric Actuators and Ultrasonic Motors
(
Kluwer Academic
,
Boston, MA
,
1997
).
2.
C.
Schuh
,
T.
Steinkopff
,
A.
Wolff
, and
K.
Lubitz
,
Smart Structures and Materials 2000: Active Materials: Behavior and Mechanics
(
Newport Beach
,
CA
, March,
2000
);
C.
Schuh
,
T.
Steinkopff
,
A.
Wolff
, and
K.
Lubitz
,
Proc. SPIE
3992
,
165
(2000).
3.
M.
Mitrovic
,
G. P.
Carman
, and
F. K.
Straub
,
Int. J. Solids Struct.
38
,
4357
(
2001
).
4.
A.
Furuta
and
K.
Uchino
,
J. Am. Ceram. Soc.
76
,
1615
(
1993
).
5.
K.
Lubitz
,
C.
Schuh
,
T.
Steinkopff
, and
A.
Wolff
,
in Piezoelectric Materials in Devices
, edited by
N.
Setter
(
EPFL
,
Lausanne, Switzerland
,
2002
), p.
183
.
6.
U.
Joshi
,
Y.
Kalish
,
C.
Savonen
,
V.
Venugopal
, and
N.
Henein
, FY 2003 Progress Report, DOE program on Heavy Vehicle Propulsion Materials, p.
7
.
7.
D. A.
Hall
,
J. Mater. Sci.
36
,
4575
(
2001
).
8.
D. C.
Lupascu
and
J.
Rödel
,
Adv. Eng. Mater.
7
,
882
(
2005
).
9.
J.
Glaum
,
T.
Granzow
,
L. A.
Schmitt
,
H. J.
Kleebe
, and
J.
Rödel
,
Acta Mater.
59
,
6083
(
2011
).
10.
A. K.
Tagantsev
,
I.
Stolichnov
,
E. L.
Colla
, and
N.
Setter
,
J. Appl. Phys.
90
,
1387
(
2001
).
11.
X. J.
Lou
and
J.
Wang
,
J. Appl. Phys.
108
,
034104
(
2010
).
12.
B.
Andersen
,
F.
Jensen
, and
S.
Ouchouche
, in 9th Int. Conf. on New Actuators, Bremen, Germany, 14–16 June
2004
, http://www.noliac.com.
13.
H.
Wang
,
A. A.
Wereszczak
, and
H.-T.
Lin
,
J. Appl. Phys.
105
,
014112
(
2009
).
14.
H.
Wang
,
T. A.
Cooper
,
H.-T.
Lin
, and
A. A.
Wereszczak
,
J. Appl. Phys.
108
,
084107
(
2010
).
15.
N.
Balke
,
D. C.
Lupascu
,
T.
Granzow
, and
J.
Rödel
,
J. Am. Ceram. Soc.
90
,
1081
(
2007
).
16.
S.
Sherrit
,
S. P.
Leary
,
Y.
Bar-Cohen
,
B. P.
Dolgin
, and
R.
Tasker
, in
2000 IEEE Ultrasonics Symp.
(
2000
), Vol.
2
, p. 1
037
.
17.
C. R.
Bowen
,
M.
Lopez-Prieto
,
S.
Mahon
, and
F.
Lowrie
,
Scr. Mater.
42
,
813
(
2000
).
18.
Noliac Group, Piezo Actuators,
2012
, http://www.noliac.com.
19.
C. A.
Randall
,
A.
Kelnberger
,
G. L.
Yang
,
R. E.
Eitel
, and
T. R.
Shrout
,
J. Electroceram.
14
,
177
(
2005
).
20.
H.
Wang
,
A. A.
Wereszczak
, and
H.-T.
Lin
, Dual-rod piezodilatometer and method for testing a piezoceramic plate, ORNL Invention Disclosure 200802179, US DOE S-115, 208.
21.
H.
Wang
,
T.
Matsunaga
,
H.-T.
Lin
, and
A. M.
Mottern
,
Smart Mater. Struct.
21
,
025009
(
2012
).
22.
Solartron Analytical, 1260 Impedance/Gain-Phase Analyzer, Operating Manual, Solartron, Hampshire UK, January
1996
.
23.
24.
D.
Zhou
,
M.
Kamlah
, and
D.
Munz
,
J. Mater. Res.
19
,
834
(
2004
).
25.
M. K.
Ferber
, Oak Ridge National Laboratory, March 26,
2012
.
26.
H. T.
Chung
,
B. C.
Shih
, and
H. G.
Kim
,
J. Am. Ceram. Soc.
72
,
327
(
1989
).
28.
M. D.
Hill
,
G. S.
White
, and
C.-S.
Hwang
,
J. Am. Ceram. Soc.
79
,
1915
(
1996
).
29.
X.
Tan
and
J. K.
Shang
,
Philos. Mag. A
82
,
1463
(
2002
).
30.
J.
Nuffer
,
D. C.
Lupascu
,
A.
Glazounov
,
H.-J.
Kleebe
, and
J.
Rödel
,
J. Eur. Ceram. Soc.
22
,
2133
(
2002
).
31.
R.
Bartnikas
, in
Engineering Dielectrics, Electrical Properties of Solid Insulating Materials: Measurement Techniques
, edited by
R.
Bartnikas
(
ASTM Special Technical Publication 926
,
Philadelphia, PA
,
1987
), Vol. II B, p.
157
.
32.
K. N.
Mathes
, in
Engineering Dielectrics, Electrical Properties of Solid Insulating Materials: Measurement Techniques
, edited by
R.
Bartnikas
(
ASTM Special Technical Publication
,
Philadelphia, PA
,
1987
), Vol. II B, p.
221
.
33.
H.-Z.
Ding
and
B. R.
Varlow
,
IEEE Trans. Dielectr. Electr. Insul.
12
,
81
(
2005
).
34.
K.
Uchino
and
A.
Furuta
, in
Proc. of Eighth IEEE Int. Symp. on Applications of Ferroelectrics, Greenville, SC
(
1992
), p.
195
.
35.
P. M.
Chaplya
,
M.
Mitrovic
,
G. P.
Carman
, and
F. K.
Straub
,
J. Appl. Phys.
100
,
124111
(
2006
).
36.
Y.
Zhang
and
D. C.
Lupascu
,
J. Appl. Phys.
100
,
054109
(
2006
).
37.
J.
Nuffer
,
D. C.
Lupascu
, and
J.
Rödel
,
Acta Mater.
48
,
3783
(
2000
).
38.
B.
Zickgraf
,
G. A.
Schneider
, and
F.
Aldinger
, in
Proc. of 9th IEEE Int. Symp. on Applications of Ferroelectrics, University Park, PA
(
1994
), p.
325
.
39.
H.
Wang
and
A. A.
Wereszczak
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
55
,
2559
(
2008
).
40.
T. Y.
Zhang
and
C. F.
Gao
,
Theor. Appl. Fract. Mech.
41
,
339
(
2004
).
You do not currently have access to this content.