Mechanically induced reactivity is a promising means for designing self-reporting materials. Mechanically sensitive chemical groups called mechanophores are covalently linked into polymers in order to trigger specific chemical reactions upon mechanical loading. These mechanophores can be linked either within the backbone or as crosslinks between backbone segments. Mechanophore response is sensitive to both the matrix properties and placement within the matrix, providing two avenues for material design. A model framework is developed to describe reactivity of mechanophores located as crosslinks in a glassy polymer matrix. Simulations are conducted at the molecular and macromolecular scales in order to develop macroscale constitutive relations. The model is developed specifically for the case of spiropyran (SP) in lightly crosslinked polymethylmethacrylate (PMMA). This optically trackable mechanophore (fluorescent when activated) allows the model to be assessed in terms of observed experimental behavior. The force modified potential energy surface (FMPES) framework is used in conjunction with ab initio steered molecular dynamics (MD) simulations of SP to determine the mechanophore kinetics. MD simulations of the crosslinked PMMA structure under shear deformation are used to determine the relationship between macroscale stress and local force on the crosslinks. A continuum model implemented in a finite element framework synthesizes these mechanochemical relations with the mechanical behavior. The continuum model with parameters taken directly from the FMPES and MD analyses under predicts stress-driven activation relative to experimental data. The continuum model, with the physically motivated modification of force fluctuations, provides an accurate prediction for monotonic loading across three decades of strain rate and creep loading, suggesting that the fundamental physics are captured.

1.
Becke
,
A. D.
, “
Density-functional exchange energy approximation with correct asymptotic-behavior
,”
Phys. Rev. A
38
,
3098
3100
(
1988
).
2.
Becke
,
A. D.
, “
Density-functional thermochemistry 3. The role of exact exchange
,”
J. Chem. Phys.
98
,
5648
5652
(
1993
).
3.
Beiermann
,
B. A.
,
Davis
,
D. A.
,
Kramer
,
S. L. B.
,
May
,
P. A.
,
Moore
,
J. S.
,
Sottos
,
N. R.
, and
White
,
S. R.
, “
Environmental effects on mechanochemical activation of spiropyran in linear PMMA
,”
J. Mater. Chem.
21
,
8443
8447
(
2011
).
6.
Bell
,
G. I.
, “
Models for specific adhesion of cells to cells
,”
Science
200
,
618
627
(
1978
).
7.
Black
,
A. L.
,
Lenhardt
,
J. M.
, and
Craig
,
S. L.
, “
From molecular mechanochemistry to stress-responsive materials
,”
J. Mater. Chem.
21
,
1655
1663
(
2011
).
9.
Caruso
,
M. M.
,
Davis
,
D. A.
,
Shen
,
Q.
,
Odom
,
S. A.
,
Sottos
,
N. R.
,
White
,
S. R.
, and
Moore
,
J. S.
, “
Mechanically induced chemical changes in polymeric materials
,”
Chem. Rev.
109
,
5755
5798
(
2009
).
11.
Cremar
,
L. D.
, “
Insights for designing mechanochromic spiropyrans from first principles dynamics and minimum energy pathways
,” Ph.D. dissertation (
Stanford University
, Palo Alto, CA,
2012
).
12.
Davis
,
D. A.
,
Hamilton
,
A.
,
Yang
,
J.
,
Cramer
,
L. D.
,
Gough
,
D. V.
,
Potisek
,
S. L.
,
Ong
,
M. T.
,
Braun
,
P. V.
,
Martinez
,
T. J.
,
White
,
S. R.
,
Moore
,
J. S.
, and
Sottos
,
N. S.
, “
Force-induced activation of covalent bonds in mechanoresponsive polymeric materials
,”
Nat. Lett.
459
,
68
72
(
2009
).
13.
Fan
,
C. F.
,
Cagin
,
T.
,
Chen
,
Z. M.
, and
Smith
,
K. A.
, “
Molecular modeling of polycarbonate. 1. Force filed, static structure, and mechanical properties
,”
Macromolecules
27
,
2383
2391
(
1994
).
15.
Hickenboth
,
C. R.
,
Moore
,
J. S.
,
White
,
S. R.
,
Sottos
,
N. R.
,
Baudry
,
J.
, and
Wilson
,
S. R.
, “
Biasing reaction pathways with mechanical force
,”
Nature
446
,
423
427
(
2007
).
16.
Hohenberg
,
P.
and
Kohn
,
W.
, “
Inhomogeneous electron gas
,”
Phys. Rev.
136
,
B864
B871
(
1964
).
17.
Jaramillo
,
E.
,
Wilson
,
N.
,
Christensen
,
S.
,
Gosse
,
J.
, and
Strachan
,
A.
, “
Energy-based yield criterion for PMMA for large-scale molecular dynamics simulations
,”
Phys. Rev. B
85
,
024114
1
(
2012
).
18.
Kauzmann
,
W. J.
and
Eyring
,
H.
, “
The viscous flow of large molecules
,”
J. Am. Chem. Soc.
62
,
3113
3125
(
1940
).
19.
Kingsbury
,
C. M.
, “
Multiscale characterization of mechanochemical reactions in mechanophore-crosslinked polymers under shear loading
,” Ph.D. thesis (
The University of Illinois at Urbana-Champaign
, Urbana, IL,
2012
).
20.
Kingsbury
,
C. M.
,
May
,
P. A.
,
Davis
,
D. A.
,
White
,
S. R.
,
Moore
,
J. S.
, and
Sottos
,
N. R.
, “Time-dependent mechanochemical response of SP-crosslinked PMMA” (to be published).
21.
Lee
,
C. K.
,
Davis
,
D. A.
,
White
,
S. R.
,
Moore
,
J. S.
,
Sottos
,
N. R.
, and
Braun
,
P. V.
, “
Force-induced redistribution of chemical equilibrium
,”
J. Am. Chem. Soc.
132
,
16107
16111
(
2010
).
22.
Mark
,
J. E.
,
Physical Properties of Polymers Handbook
(
American Institute of Physics
,
New York
,
1996
).
23.
Mayo
,
S. L.
,
Olafson
,
B. D.
, and
Goddard
,
W. A.
, “
DREIDING: A generic force field for molecular simulations
,”
J. Phys. Chem.
94
,
8897
8909
(
1990
).
25.
Mulliken
,
A. D.
and
Boyce
,
M. C.
, “
Mechanics of the rate-dependent elastic-plastic deformation of glassy polymers from low to high strain rates
,”
Int. J. Solids Struct.
43
,
1331
1356
(
2006
).
26.
Nadai
,
A.
,
Theory of Flow and Fracture of Solids
(
McGraw-Hill
,
New York
,
1950
).
27.
Ong
,
M. T.
,
Leiding
,
J.
,
Hongli
,
T.
,
Virshup
,
A. M.
, and
Martinez
,
T. J.
, “
First principles dynamics and minimum energy pathways for mechanochemical ring opening of cyclobutene
,”
J. Am. Chem. Soc. Commun.
131
,
6377
6379
(
2009
).
29.
Plimpton
,
S. J.
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
30.
Sane
,
S. B.
,
Cagin
,
T.
,
Knauss
,
W. G.
, and
Goddard
 III,
W. A.
, “
Molecular dynamics simulations to compute the bulk response of amorphous PMMA
,”
J. Comput. Aided Mater. Des.
8
,
87
106
(
2001
).
31.
Silberstein
,
M. N.
,
Cremar
,
L. D.
,
Beiermann
,
B. A.
,
Kramer
,
S. B.
,
White
,
S. R.
,
Martinez
,
T. J.
, and
Sottos
,
N. R.
, “Modeling mechanophore activation within a viscous rubbery network” (personal communication).
32.
Srivastava
,
V.
,
Chester
,
S. A.
,
Ames
,
N. M.
, and
Anand
,
L.
, “
A thermo-mechanically coupled large-deformation theory for amorphous polymers in a temperature range which spans their glass transition
,”
Int. J. Plast.
26
,
1138
1182
(
2010
).
34.
Wu
,
H. C.
,
Xu
,
Z.
, and
Wang
,
P. T.
, “
The shear stress-strain curve determination from torsion test in the large strain regime
,”
J. Test. Eval.
20
,
396
402
(
1992
).
You do not currently have access to this content.