A Monte Carlo hopping model was developed to simulate electron and hole transport in nanocrystalline PbSe films. Transport is carried out as a series of thermally activated hopping events between neighboring sites on a cubic lattice. Each site, representing an individual nanocrystal, is assigned a size-dependent electronic structure, and the effects of particle size, charging, interparticle coupling, and energetic disorder on electron and hole mobilities were investigated. Results of simulated field-effect measurements confirm that electron mobilities and conductivities at constant carrier densities increase with particle diameter by an order of magnitude up to 5 nm and begin to decrease above 6 nm. We find that as particle size increases, fewer hops are required to traverse the same distance and that site energy disorder significantly inhibits transport in films composed of smaller nanoparticles. The dip in mobilities and conductivities at larger particle sizes can be explained by a decrease in tunneling amplitudes and by charging penalties that are incurred more frequently when carriers are confined to fewer, larger nanoparticles. Using a nearly identical set of parameter values as the electron simulations, hole mobility simulations confirm measurements that increase monotonically with particle size over two orders of magnitude.

1.
Y.
Liu
,
M.
Gibbs
,
J.
Puthussery
,
S.
Gaik
,
R.
Ihly
,
H. W.
Hillhouse
, and
M.
Law
, “
Dependence of carrier mobility on nanocrystal size and ligand length in pbse nanocrystal solids
,”
Nano Lett.
10
,
1960
1969
(
2010
).
2.
D.
Vanmaekelbergh
and
P.
Liljeroth
, “
Electron-conducting quantum dot solids: Novel materials based on colloidal semiconductor nanocrystals
,”
Chem. Soc. Rev.
34
,
299
312
(
2005
).
3.
I.
Kang
and
F. W.
Wise
, “
Electronic structure and optical properties of pbs and pbse quantum dots
,”
J. Opt. Soc. Am. B
14
,
1632
1646
(
1997
).
4.
F. W.
Wise
, “
Lead salt quantum dots: the limit of strong quantum confinement
,”
Acc. Chem. Res.
33
,
773
780
(
2000
).
5.
A. D.
Andreev
,
E. V.
Kolobkova
, and
A. A.
Lipovskii
, “
Optical absorption in pbse spherical quantum dots embedded in glass matrix
,”
J. Appl. Phys.
88
,
750
757
(
2000
).
6.
W. A.
Tisdale
,
K. J.
Williams
,
B. A.
Timp
,
D. J.
Norris
,
E. S.
Aydil
, and
X.-Y.
Zhu
, “
Hot-electron transfer from semiconductor nanocrystals
,”
Science
328
,
1543
1547
(
2010
).
7.
M. S.
Kang
,
A.
Sahu
,
D. J.
Norris
, and
C.
Daniel Frisbie
, “
Size- and temperature-dependent charge transport in pbse nanocrystal thin films
,”
Nano Lett.
11
,
3887
3892
(
2011
).
8.
D. V.
Talapin
and
C. B.
Murray
, “
Pbse nanocrystal solids for n- and p-channel thin film field-effect transistors
,”
Science
310
,
86
89
(
2005
).
9.
R. D.
Schaller
and
V. I.
Klimov
, “
High efficiency carrier multiplication in pbse nanocrystals: Implications for solar energy conversion
,”
Phys. Rev. Lett.
92
,
186601
(
2004
).
10.
J. J. H.
Pijpers
,
R.
Ulbricht
,
K. J.
Tielrooij
,
A.
Osherov
,
Y.
Golan
,
C.
Delerue
,
G.
Allan
, and
M.
Bonn
, “
Assessment of carrier-multiplication efficiency in bulk PbSe and PbS
,”
Nature Phys.
5
,
811
814
(
2009
).
11.
S.
Emin
,
S. P.
Singh
,
L.
Han
,
N.
Satoh
, and
A.
Islam
, “
Colloidal quantum dot solar cells
,”
Solar Energy
85
,
1264
1282
(
2011
).
12.
R. J.
Ellingson
,
M. C.
Beard
,
J. C.
Johnson
,
P.
Yu
,
O. I.
Micic
,
A. J.
Nozik
,
A.
Shabaev
, and
A. L.
Efros
, “
Highly efficient multiple exciton generation in colloidal pbse and pbs quantum dots
,”
Nano Lett.
5
,
865
871
(
2005
).
13.
V. I.
Klimov
, “
Detailed-balance power conversion limits of nanocrystal-quantum-dot solar cells in the presence of carrier multiplication
,”
Appl. Phys. Lett.
89
,
123118
(
2006
).
14.
J.
Lee
,
O.
Choi
, and
E.
Sim
, “
Nonmonotonic size-dependent carrier mobility in pbse nanocrystal arrays
,”
J. Phys. Chem. Lett.
3
,
714
719
(
2012
).
15.
A.
Miller
and
E.
Abrahams
, “
Impurity conduction at low concentrations
,”
Phys. Rev.
120
,
745
755
(
1960
).
16.
H.
Bssler
, “
Charge transport in disordered organic photoconductors a monte carlo simulation study
,”
Phys. Status Solidi B
175
,
15
56
(
1993
).
17.
R. A.
Marsh
,
C.
Groves
, and
N. C.
Greenham
, “
A microscopic model for the behavior of nanostructured organic photovoltaic devices
,”
J. Appl. Phys.
101
,
083509
(
2007
).
18.
F.
Yang
and
S. R.
Forrest
, “
Photocurrent generation in nanostructured organic solar cells
,”
ACS Nano
2
,
1022
1032
(
2008
).
19.
H.
Yan
,
S.
Swaraj
,
C.
Wang
,
I.
Hwang
,
N. C.
Greenham
,
C.
Groves
,
H.
Ade
, and
C. R.
McNeill
, “
Influence of annealing and interfacial roughness on the performance of bilayer donor/acceptor polymer photovoltaic devices
,”
Adv. Funct. Mater.
20
,
4329
4337
(
2010
).
20.
P. K.
Watkins
,
A. B.
Walker
, and
G. L. B.
Verschoor
, “
Dynamical monte carlo modelling of organic solar cells: The dependence of internal quantum efficiency on morphology
,”
Nano Lett.
5
,
1814
1818
(
2005
).
21.
R. E.
Chandler
,
A. J.
Houtepen
,
J.
Nelson
, and
D.
Vanmaekelbergh
, “
Electron transport in quantum dot solids: Monte carlo simulations of the effects of shell filling, coulomb repulsions, and site disorder
,”
Phys. Rev. B
75
,
085325
(
2007
).
22.
K. F.
Brennan
, “
A computer-aided approach to teaching band structure formation
,”
Education, IEEE Trans. Educ.
35
,
60
68
(
1992
).
23.
H.
Du
,
C.
Chen
,
R.
Krishnan
,
T. D.
Krauss
,
J. M.
Harbold
,
F. W.
Wise
,
M. G.
Thomas
, and
J.
Silcox
, “
Optical properties of colloidal pbse nanocrystals
,”
Nano Lett.
2
,
1321
1324
(
2002
).
24.
J. M.
An
,
A.
Franceschetti
, and
A.
Zunger
, “
Electron and hole addition energies in pbse quantum dots
,”
Phys. Rev. B
76
,
045401
(
2007
).
25.
J.
Nelson
, “
Continuous-time random-walk model of electron transport in nanocrystalline TiO_2 electrodes
,”
Phys. Rev. B
59
,
15374
15380
(
1999
).
26.
M. J.
Cass
,
Alison B.
Walker
,
D.
Martinez
, and
L. M.
Peter
, “
Grain morphology and trapping effects on electron transport in dye-sensitized nanocrystalline solar cells
,”
J. Phys. Chem. B
109
,
5100
5107
(
2005
).
You do not currently have access to this content.