Superlattices of Si3N4 and Si-rich silicon nitride thin layers with varying thickness were prepared by plasma enhanced chemical vapor deposition. After high temperature annealing, Si nanocrystals were formed in the former Si-rich nitride layers. The control of the Si quantum dots size via the SiNx layer thickness was confirmed by transmission electron microscopy. The size of the nanocrystals was well in agreement with the former thickness of the respective Si-rich silicon nitride layers. In addition X-ray diffraction evidenced that the Si quantum dots are crystalline whereas the Si3N4 matrix remains amorphous even after annealing at 1200 °C. Despite the proven Si nanocrystals formation with controlled sizes, the photoluminescence was 2 orders of magnitude weaker than for Si nanocrystals in SiO2 matrix. Also, a systematic peak shift was not found. The SiNx/Si3N4 superlattices showed photoluminescence peak positions in the range of 540–660 nm (2.3–1.9 eV), thus quite similar to the bulk Si3N4 film having peak position at 577 nm (2.15 eV). These rather weak shifts and scattering around the position observed for stoichiometric Si3N4 are not in agreement with quantum confinement theory. Therefore theoretical calculations coupled with the experimental results of different barrier thicknesses were performed. As a result the commonly observed photoluminescence red shift, which was previously often attributed to quantum-confinement effect for silicon nanocrystals, was well described by the interference effect of Si3N4 surrounding matrix luminescence.

1.
M. A.
Green
,
Prog. Photovoltaics
9
,
123
(
2001
).
2.
T.
Maeda
,
E.
Suzuki
,
I.
Sakata
,
M.
Yamanaka
, and
K.
Ishii
,
Nanotechnology
10
,
127
(
1999
).
3.
M.
Molinari
,
H.
Rinnert
, and
M.
Vergnat
,
J. Appl. Phys.
101
,
123532
(
2007
).
4.
Y.-H.
So
,
S.
Huang
,
G.
Conibeer
, and
M. A.
Green
,
Thin Solid Films
519
,
5408
(
2011
).
5.
T.-W.
Kim
,
C.-H.
Cho
,
B.-H.
Kim
, and
S.-J.
Park
,
Appl. Phys. Lett.
88
,
123102
(
2006
).
6.
A.
Yurtsever
,
M.
Weyland
, and
D. A.
Muller
,
Appl. Phys. Lett.
89
,
151920
(
2006
).
7.
M.
Zacharias
,
J.
Heitmann
,
R.
Scholz
,
U.
Kahler
,
M.
Schmidt
, and
J.
Blaesing
,
Appl. Phys. Lett.
80
,
661
(
2002
).
8.
I.
Perez-Wurfl
,
L.
Ma
,
D.
Lin
,
X.
Hao
,
M. A.
Green
, and
G.
Conibeer
,
Sol. Energy Mater. Sol. Cells
100
,
65
(
2012
).
9.
C.-W.
Jiang
and
M. A.
Green
,
J. Appl. Phys.
99
,
114902
(
2006
).
10.
T.-Y.
Kim
,
N.-M.
Park
,
K.-H.
Kim
,
G. Y.
Sung
,
Y.-W.
Ok
,
T.-Y.
Seong
, and
C.-J.
Choi
,
Appl. Phys. Lett.
85
,
5355
(
2004
).
11.
P. D.
Nguyen
,
D. M.
Kepaptsoglou
,
Q. M.
Ramasse
, and
A.
Olsen
,
Phys. Rev. B
85
,
085315
(
2012
).
12.
Y.-H.
So
,
A.
Gentle
,
S.
Huang
,
G.
Conibeer
, and
M. A.
Green
,
J. Appl. Phys.
109
,
064302
(
2011
).
13.
J.
Kistner
,
X.
Chen
,
Y.
Weng
,
H. P.
Strunk
,
M. B.
Schubert
, and
J. H.
Werner
,
J. Appl. Phys.
110
,
023520
(
2011
).
14.
M.
Blech
,
A.
Laades
,
C.
Ronning
,
B.
Schröter
,
C.
Borschel
,
D.
Rzesanke
, and
A.
Lawerenz
, in
24th EU-PVSEC
(
2009
).
15.
T.
Müller
,
K.-H.
Heinig
, and
W.
Möller
,
Appl. Phys. Lett.
81
,
3049
(
2002
).
16.
T.
Makino
,
J. Electrochem. Soc.
130
,
450
(
1983
).
17.
W. A. P.
Claassen
,
W. G. J. N.
Valkenburg
,
F. H. P. M.
Habraken
, and
Y.
Tamminga
,
J. Electrochem. Soc.
130
,
2419
(
1983
).
18.
M.
Zacharias
and
P.
Streitenberger
,
Phys. Rew. B
62
,
8391
(
2000
).
19.
M.
Molinari
,
H.
Rinnert
, and
M.
Vergnat
,
Appl. Phys. Lett.
77
,
3499
(
2000
).
20.
G.
Scardera
,
T.
Puzzer
,
I.
Perez-Wurfl
, and
G.
Conibeer
,
J. Cryst. Growth
310
,
3680
(
2008
).
21.
G.
Scardera
,
E.
Bellet-Amalric
,
D.
Bellet
,
T.
Puzzer
,
E.
Pink
, and
G.
Conibeer
,
J. Cryst. Growth
310
,
3685
(
2008
).
22.
A. M.
Hartel
,
D.
Hiller
,
S.
Gutsch
,
P.
Löper
,
S.
Estradé
,
F.
Peiró
,
B.
Garrido
, and
M.
Zacharias
,
Thin Solid Films
520
,
121
(
2011
).
23.
G.
Scardera
, Ph.D. thesis,
UNSW Sydney, Australia
,
2008
.
24.
F.
Delachat
,
M.
Carrada
,
G.
Ferblantier
,
J.-J.
Grob
,
A.
Slaoui
, and
H.
Rinnert
,
Nanotechnology
20
,
275608
(
2009
).
25.
M.-S.
Yang
,
K.-S.
Cho
,
J.-H.
Jhe
,
S.-Y.
Seo
,
J. H.
Shin
,
K. J.
Kim
, and
D. W.
Moon
,
Appl. Phys. Lett.
85
,
3408
(
2004
).
26.
D.
König
,
J.
Rudd
,
M. A.
Green
, and
G.
Conibeer
,
Phys. Rev. B
78
,
035339
(
2008
).
27.
D.
Hiller
,
S.
Goetze
,
F.
Munnik
,
M.
Jivanescu
,
J. W.
Gerlach
,
J.
Vogt
,
E.
Pippel
,
N.
Zakharov
,
A.
Stesmans
, and
M.
Zacharias
,
Phys. Rev. B
82
,
195401
(
2010
).
28.
B. S.
Sahu
,
F.
Delachat
,
A.
Slaoui
,
M.
Carrada
,
G.
Ferblantier
, and
D.
Muller
,
Nano. Res. Lett.
6
,
178
(
2011
).
29.
L. B.
Ma
,
R.
Song
,
Y. M.
Miao
,
C. R.
Li
,
Y. Q.
Wang
, and
Z. X.
Cao
,
Appl. Phys. Lett.
88
,
093102
(
2006
).
30.
V.
Yu. Timoshenko
,
M. G.
Lisachenko
,
B. V.
Kamenev
,
O. A.
Shalygina
,
P. K.
Kashkarov
,
J.
Heitmann
,
M.
Schmidt
, and
M.
Zacharias
,
Appl. Phys. Lett.
84
,
2512
(
2004
).
31.
S. A.
Dyakov
,
D. M.
Zhigunov
,
A.
Hartel
,
M.
Zacharias
,
T. S.
Perova
, and
V.
Yu. Timoshenko
,
Appl. Phys. Lett.
100
,
061908
(
2012
).
32.
A. M.
Hartel
,
S.
Gutsch
,
D.
Hiller
,
C.
Kübel
,
N.
Zakharov
,
P.
Werner
, and
M.
Zacharias
,
Appl. Phys. Lett.
101
,
193103
(
2012
).
33.
M.
Schnabel
,
P.
Löper
,
M.
Canino
,
S. A.
Dyakov
,
M.
Allegrezza
,
M.
Bellettato
,
J.
López-Vidrier
,
S.
Hernández
,
C.
Summonte
,
B.
Garrido
,
P. R.
Wilshaw
, and
S.
Janz
,
Solid State Phenom.
205
,
480
(
2014
).
34.
S. A.
Dyakov
,
T. S.
Perova
,
C. Q.
Miao
,
Y.-H.
Xie
,
S. A.
Cherevkov
, and
A. V.
Baranov
,
J. Raman Spectrosc.
44
,
803
(
2013
).
35.
E. D.
Palik
,
Handbook of Optical Constants of Solids
, 1,
575
(
1985
).
36.
See supplementary material at http://dx.doi.org/10.1063/1.4830026 for the detailed information of the optical constants and layer thicknesses used in calculations.
37.
S.
Hayashi
and
K.
Yamamoto
,
J. Lumin.
70
,
352
(
1996
).
38.
J.
Bauer
,
Phys. Status Solidi A
39
,
411
(
1977
).
39.
S. V.
Deshpande
,
E.
Gulari
,
S. W.
Brown
, and
S. C.
Rand
,
J. Appl. Phys.
77
,
6534
(
1995
).
40.
L.
Dal Negro
,
J. H.
Yi
,
L. C.
Kimerling
,
S.
Hamel
,
A.
Williamson
, and
G.
Galli
,
Appl. Phys. Lett.
88
,
183103
(
2006
).
41.
D.
Hiller
,
A.
Zelenina
,
S.
Gutsch
,
S.
Dyakov
,
M.
Kořínek
,
F.
Trojánek
,
P.
Malý
,
M.
Schnabel
,
C.
Weiss
, and
M.
Zacharias
, “
Absence of quantum confinement effects in the photoluminescence of Si3N4–embedded Si nanocrystals
” (to be published).

Supplementary Material

You do not currently have access to this content.