We used a complement of photoemission and cathodoluminescence techniques to measure formation of the BaTiO3 (BTO) on SrTiO3 (STO) heterojunction band offset grown monolayer by monolayer by molecular beam epitaxy. X-ray photoemission spectroscopy (XPS) provided core level and valence band edge energies to monitor the valence band offset in-situ as the first few crystalline BTO monolayers formed on the STO substrate. Ultraviolet photoemission spectroscopy (UPS) measured Fermi level positions within the band gap, work functions, and ionization potentials of the growing BTO film. Depth-resolved cathodoluminescence spectroscopy measured energies and densities of interface states at the buried heterojunction. Kraut-based XPS heterojunction band offsets provided evidence for STO/BTO heterojunction linearity, i.e., commutativity and transitivity. In contrast, UPS and XPS revealed a large dipole associated either with local charge transfer or strain-induced polarization within the BTO epilayer.

1.
S. A.
Chambers
,
T.
Droubay
, and
T. C.
Kaspar
,
J. Vac. Sci. Technol.
22
,
2205
(
2004
).
2.
F.
Amy
,
A. S.
Wan
,
A.
Kahn
,
F. J.
Walker
, and
R. A.
McKee
,
J. Appl. Phys.
96
,
1635
(
2004
).
3.
F.
Amy
,
A.
Wan
,
A.
Kahn
,
F. J.
Walker
, and
R. A.
McKee
,
J. Appl. Phys.
96
,
1601
(
2004
).
4.
J.
Robertson
and
C. W.
Chen
,
Appl. Phys. Lett.
74
,
1168
(
1999
).
5.
J.
Junquera
,
M.
Zimmer
,
P.
Ordejón
, and
P.
Ghosez
,
Phys. Rev. B
67
,
155327
(
2003
).
6.
J.
Kim
,
Y.
Kim
,
Y. S.
Kim
,
J.
Lee
,
L.
Kim
, and
D.
Jung
,
Appl. Phys. Lett.
80
,
3581
(
2002
).
7.
L.
Kim
,
J.
Kim
,
U. V.
Waghmare
,
D.
Jung
, and
J.
Lee
,
Phys. Rev. B
72
,
214121
(
2005
).
8.
W. D.
Kingery
,
H. K.
Bowen
, and
D. R.
Uhlmann
,
Introduction to Ceramics
, 2nd ed. (
John Wiley & Sons
,
New York)
, pp.
913
973
.
9.
C. M.
Brooks
,
L. F.
Kourkoutis
,
T.
Heeg
,
J.
Schubert
,
D. A.
Muller
, and
D. G.
Schlom
,
Appl. Phys. Lett.
94
,
162905
(
2009
).
10.
J.
Zhang
,
S.
Walsh
,
C.
Brooks
,
D. G.
Schlom
, and
L. J.
Brillson
,
J. Vac. Sci. Technol. B
26
,
1466
(
2008
).
11.
J.
Zhang
,
D.
Doutt
,
T.
Merz
,
J.
Chakhalian
,
M.
Kareev
,
J.
Liu
, and
L. J.
Brillson
,
Appl. Phys. Lett.
94
,
092904
(
2009
).
12.
A.
Klein
,
J. Am. Ceram. Soc.
96
,
331
(
2013
).
13.
M.
Cardona
,
Phys. Rev.
140
,
A651
(
1965
), and references therein.
14.
E. A.
Kraut
,
R. W.
Grant
,
J. R.
Waldrop
, and
S. P.
Kowalczyk
,
Phys. Rev. Lett.
44
,
1620
(
1980
).
15.
L. J.
Brillson
,
J. Phys. D: Appl. Phys.
45
,
183001
(
2012
).
16.
L. J.
Brillson
,
J. Vac. Sci. Technol. B
19
,
1762
(
2001
).
17.
M. M.
Rutkowski
,
K. M.
McNicholas
,
Z. Q.
Zeng
, and
L. J.
Brillson
,
Rev. Sci. Instrum.
84
,
065105
(
2013
).
18.
J. H.
Haeni
,
C. D.
Theis
, and
D. G.
Schlom
,
J. Electroceram.
4
,
385
(
2000
).
19.
P.
Hovington
,
D.
Drouin
, and
R.
Gauvin
,
Scanning
19
,
1
(
2006
).
20.
J. J.
Yeh
and
I.
Lindau
,
At. Data Nucl. Data Tables
32
,
1
(
1985
).
21.
J. E.
Rault
,
G.
Agnus
,
T.
Maroutian
,
V.
Pillard
,
Ph.
Lecoeur
,
G.
Niu
,
B.
Vilquin
,
M. G.
Silly
,
A.
Bendounan
,
F.
Sirotti
, and
N.
Barrett
,
Phys. Rev. B
87
,
155146
(
2013
).
22.
F.
Cheng
and
A.
Klein
,
Phys. Res. B
86
,
094105
(
2012
).
23.
O.
Kubaschewski
,
C. B.
Alcock
, and
P. J.
Spencer
,
Materials Thermochemistry
, 6th ed. (
Pergamon
,
Oxford
,
1993
).
24.
T.
Higuchi
,
T.
Tsukamoto
,
N.
Sata
,
M.
Ishigame
,
Y.
Tezuka
, and
S.
Shin
,
Solid State Ion.
108
,
349
(
1998
).
25.
L. T.
Hudson
,
R. L.
Kurtz
,
S. W.
Robey
,
D.
Temple
, and
R. L.
Stockbauer
,
Phys. Rev. B
47
,
1174
(
1993
).
26.
27.
V. E.
Henrich
and
P. A.
Cox
,
The Surface Science of Metal Oxides
(
Cambridge University Press
,
Cambridge, UK
,
1994
).
28.
A.
Gunhold
,
L.
Beuermann
,
K.
Gömann
,
G.
Borchardt
,
V.
Kempter
,
W.
Maus-Friedrichs
,
S.
Piskunov
,
E. A.
Kotomin
, and
S.
Dorfman
,
Surf. Interface Anal.
35
,
998
(
2003
).
29.
Z.
Zeng
,
S.
Balaz
, and
L. J.
Brillson
, “
Molecular Beam Epitaxy Growth of BaTiO3/SrTiO3 Heterojunction and The Transition of Electrical Properties
,”
Nano Research
(unpublished).
30.
E.
Pellach
and
H. Z.
Sar-El
,
J. Electron. Spectrosc. Relat. Phenom.
14
,
259
(
1978
); Omicron satellite ratio 1.2%-1.8% is given in VUV Source HIS 13, version 2.3 Omicron NanoTechnology, Taunusstein, Germany, November
2011
.
31.
L. J.
Brillson
,
R. Z.
Bachrach
,
R. S.
Bauer
, and
J.
McMenamin
,
Phys. Rev. Lett.
42
,
397
(
1979
).
32.
H. B.
Michaelson
,
J. Appl. Phys.
48
,
4729
(
1977
).
33.
A.
Ohtomo
and
H. Y.
Hwang
,
Nature
427
,
423
(
2004
).
34.
G.
Koschek
and
E.
Kubalek
,
Phys. Status Solidi A
79
,
131
(
1983
).
35.
J.
Nowotny
and
M.
Rekas
,
Ceram. Int.
20
,
251
(
1994
).
36.
A.
Petraru
,
N. A.
Pertsev
,
H.
Kohlstedt
,
U.
Poppe
,
R.
Waser
,
A.
Solbach
, and
U.
Klemradt
,
J. Appl. Phys.
101
,
114106
(
2007
).
37.
K.
Johnston
,
X.
Huang
,
J. B.
Neaton
, and
K.
Rabe
,
Phys. Rev. B
71
,
100103
(
2005
).
38.
M.
Dawber
,
K. M.
Rabe
, and
J. F.
Scott
,
Rev. Mod. Phys.
77
,
1083
(
2005
).
39.
H. P.
Sun
,
W.
Tian
,
X. Q.
Pan
,
J. H.
Haeni
, and
D. G.
Schlom
,
Appl. Phys. Lett.
84
,
3298
(
2004
).
40.
M.
Kawai
,
D.
Kan
,
S.
Isojima
,
H.
Kurata
,
S.
Isoda
,
Y.
Shimakawa
 et al,
J. Appl. Phys.
102
,
114311
(
2007
).
You do not currently have access to this content.