We report on bandgap engineering of an emerging photovoltaic material of Cu2CdxZn1−xSnS4 (CCZTS) alloy. CCZTS alloy thin films with different Cd contents and single kesterite phase were fabricated using the sol-gel method. The optical absorption measurements indicate that the bandgap of the kesterite CCZTS alloy can be continuously tuned in a range of 1.55–1.09 eV as Cd content varied from x = 0 to 1. Hall effect measurements suggest that the hole concentration of CCZTS films decreases with increasing Cd content. The CCZTS-based solar cell with x = 0.47 demonstrates a power conversion efficiency of 1.2%. Our first-principles calculations based on the hybrid functional method demonstrate that the bandgap of the kesterite CCZTS alloy decreases monotonically with increasing Cd content, supporting the experimental results. Furthermore, Cu2ZnSnS4/Cu2CdSnS4 interface has a type-I band-alignment with a small valence-band offset, explaining the narrowing of the bandgap of CCZTS as the Cd content increases. Our results suggest that CCZTS alloy is a potentially suitable material to fabricate high-efficiency multi-junction tandem solar cells with different bandgap-tailored absorption layers.

1.
Y.-H.
Su
,
Y.-F.
Ke
,
S.-L.
Cai
, and
Q.-Y.
Yao
,
Light: Sci. Appl.
1
,
e14
(
2012
).
2.
W. J. E.
Beek
,
M. M.
Wienk
, and
R. A. J.
Janssen
,
Adv. Mater.
16
,
1009
(
2004
).
3.
E. D.
Kosten
,
J. H.
Atwater
,
J.
Parsons
,
A.
Polman
, and
H. A.
Atwater
,
Light: Sci. Appl.
2
,
e45
(
2013
).
4.
K.
Ramanathan
,
G.
Teeter
,
J. C.
Keane
, and
R.
Noufi
,
Thin Solid Films
480
,
499
(
2005
).
5.
S. S.
Schmidt
,
D.
Abou-Ras
,
S.
Sadewasser
,
W.
Yin
,
C.
Feng
, and
Y.
Yan
,
Phys. Rev. Lett.
109
,
095506
(
2012
).
6.
C.
Wadia
,
A. P.
Alivisatos
, and
D. M.
Kammen
,
Environ. Sci. Tech.
43
,
2072
(
2009
).
7.
B.
Shin
,
O.
Gunawan
,
Y.
Zhu
,
N. A.
Bojarczuk
,
S. J.
Chey
, and
S.
Guha
,
Prog. Photovoltaics
21
,
72
(
2013
).
8.
C.
Tablero
,
J. Phys. Chem. C
116
,
23224
(
2012
).
9.
A.
Walsh
,
S.
Chen
,
S.-H.
Wei
, and
X.-G.
Gong
,
Adv. Energy Mater.
2
,
400
(
2012
).
10.
T.
Todorov
and
D. B.
Mitzi
,
Eur. J. Inorg. Chem.
2010
,
17
(
2010
).
11.
J.-S.
Seol
,
S.-Y.
Lee
,
J.-C.
Lee
,
H.-D.
Nam
, and
K.-H.
Kim
,
Sol. Energy Mater. Sol. Cells
75
,
155
(
2003
).
12.
K.
Tanaka
,
Y.
Fukui
,
N.
Moritake
, and
H.
Uchiki
,
Sol. Energy Mater. Sol. Cells
95
,
838
(
2011
).
13.
L.
Sun
,
J.
He
,
H.
Kong
,
F.
Yue
,
P.
Yang
, and
J.
Chu
,
Sol. Energy Mater. Sol. Cells
95
,
2907
(
2011
).
14.
S.
Schorr
,
Sol. Energy Mater. Sol. Cells
95
,
1482
(
2011
).
15.
T.
Rath
,
W.
Haas
,
A.
Pein
,
R.
Saf
,
E.
Maier
,
B.
Kunert
,
F.
Hofer
,
R.
Resel
, and
G.
Trimmel
,
Sol. Energy Mater. Sol. Cells
101
,
87
(
2012
).
16.
C.-R.
Li
,
Y.-F.
Li
,
B.
Yao
,
G.
Yang
,
Z.-H.
Ding
,
R.
Deng
, and
L.
Liu
,
Phys. Lett. A
377
,
2398
(
2013
).
17.
T.
Kato
,
H.
Hiroi
,
N.
Sakai
,
S.
Muraoka
, and
H.
Sugimoto
, “
Characterization of front and back interfaces on Cu2ZnSnS4 thin-film solar cells
,” in
27th European Photovoltaic Solar Energy Conference and Exhibition
(
2012
), p.
2236
.
18.
M.
Schmid
,
R.
Caballero
,
R.
Klenk
,
J.
Krč
,
T.
Rissom
,
M.
Topič
, and
M. C.
Lux-Steiner
,
EPJ Photovolt.
1
,
10601
(
2010
).
19.
M.
Meusel
,
C.
Baur
,
G.
Letay
,
A. W.
Bett
,
W.
Warta
, and
E.
Fernandez
,
Prog. Photovoltaics
11
,
499
(
2003
).
20.
N. J.
Ekins-Daukes
,
K. W. J.
Barnham
,
J. P.
Connolly
,
J. S.
Roberts
,
J. C.
Clark
,
G.
Hill
, and
M.
Mazzer
,
Appl. Phys. Lett.
75
,
4195
(
1999
).
21.
H. K.
Kang
,
S.-H.
Park
,
D. H.
Jun
,
C. Z.
Kim
,
K. M.
Song
,
W.
Park
,
C. G.
Ko
, and
H.
Kim
,
Semicond. Sci. Technol.
26
,
075009
(
2011
).
22.
Y. F.
Li
,
B.
Yao
,
Y. M.
Lu
,
C. X.
Cong
,
Z. Z.
Zhang
,
Y. Q.
Gai
,
C. J.
Zheng
,
B. H.
Li
,
Z. P.
Wei
,
D. Z.
Shen
,
X. W.
Fan
,
L.
Xiao
,
S. C.
Xu
, and
Y.
Liu
,
Appl. Phys. Lett.
91
,
021915
(
2007
).
23.
Y. F.
Li
,
B.
Yao
,
Y. M.
Lu
,
Y. Q.
Gai
,
C. X.
Cong
,
Z. Z.
Zhang
,
D. X.
Zhao
,
J. Y.
Zhang
,
B. H.
Li
,
D. Z.
Shen
,
X. W.
Fan
, and
Z. K.
Tang
,
J. Appl. Phys.
104
,
083516
(
2008
).
24.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
25.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
26.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
27.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
,
J. Chem. Phys.
118
,
8207
(
2003
).
28.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
29.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
30.
T.
Maeda
,
S.
Nakamura
, and
T.
Wada
,
Jpn. J. Appl. Phys., Part 1
51
,
10NC11
(
2012
).
31.
R.
Deng
,
B.
Yao
,
Y. F.
Li
,
Y. M.
Zhao
,
B. H.
Li
,
C. X.
Shan
,
Z. Z.
Zhang
,
D. X.
Zhao
,
J. Y.
Zhang
,
D. Z.
Shen
, and
X. W.
Fan
,
Appl. Phys. Lett.
94
,
022108
(
2009
).
32.
T. M.
Duc
,
C.
Hsu
, and
J. P.
Faurie
,
Phys. Rev. Lett.
58
,
1127
(
1987
).
33.
S. P.
Kowalczyk
,
J. T.
Cheung
,
E. A.
Kraut
, and
R. W.
Grant
,
Phys. Rev. Lett.
56
,
1605
(
1986
).
34.
S.-H.
Wei
and
A.
Zunger
,
Appl. Phys. Lett.
72
,
2011
(
1998
).
35.
Y. F.
Li
,
B.
Yao
,
Y. M.
Lu
,
B. H.
Li
,
Y. Q.
Gai
,
C. X.
Cong
,
Z. Z.
Zhang
,
D. X.
Zhao
,
J. Y.
Zhang
,
D. Z.
Shen
, and
X. W.
Fan
,
Appl. Phys. Lett.
92
,
192116
(
2008
).
36.
S.
Chen
,
X. G.
Gong
,
A.
Walsh
, and
S.-H.
Wei
,
Appl. Phys. Lett.
96
,
021902
(
2010
).
37.
J.
Paier
,
R.
Asahi
,
A.
Nagoya
, and
G.
Kresse
,
Phys. Rev. B
79
,
115126
(
2009
).
38.
M.
Polak
,
J. Electron Spectrosc. Relat. Phenom.
28
,
171
(
1982
).
39.
W. J.
Danaher
,
L. E.
Lyons
,
M.
Marychurch
, and
G. C.
Morris
,
Appl. Surf. Sci.
27
,
338
(
1986
).
40.
S. C.
Riha
,
B. A.
Parkinson
, and
A. L.
Prieto
,
J. Am. Chem. Soc.
131
,
12054
(
2009
).
41.
Y.
Li
,
R.
Deng
,
B.
Yao
,
G.
Xing
,
D.
Wang
, and
T.
Wu
,
Appl. Phys. Lett.
97
,
102506
(
2010
).
42.
Y. F.
Li
,
B.
Yao
,
Y. M.
Lu
,
Z. P.
Wei
,
Y. Q.
Gai
,
C. J.
Zheng
,
Z. Z.
Zhang
,
B. H.
Li
,
D. Z.
Shen
,
X. W.
Fan
, and
Z. K.
Tang
,
Appl. Phys. Lett.
91
,
232115
(
2007
).
43.
K.
Ito
and
T.
Nakazawa
,
Jpn. J. Appl. Phys., Part 1
27
,
2094
(
1988
).
44.
H.
Katagiri
,
K.
Saitoh
,
T.
Washio
,
H.
Shinohara
,
T.
Kurumadani
, and
S.
Miyajima
,
Sol. Energy Mater. Sol. Cells
65
,
141
(
2001
).
45.
V.
Nadenau
,
U.
Rau
,
A.
Jasenek
, and
H. W.
Schock
,
J. Appl. Phys.
87
,
584
(
2000
).
46.
T. K.
Todorov
,
J.
Tang
,
S.
Bag
,
O.
Gunawan
,
T.
Gokmen
,
Y.
Zhu
, and
D. B.
Mitzi
,
Adv. Energy Mater.
3
,
34
(
2013
).
You do not currently have access to this content.