The Wigner formalism is a convenient reformulation of the Schrödinger equation that allows the simulation of transient behavior of quantum systems in the presence of general boundary conditions. Recently, a Wigner Monte Carlo technique, based on particles signs, has been generalized to two-dimensional evolution problems. In this paper, we apply this technique to study the time reversibility of the quantum evolution of a wave packet colliding with a potential wall in the presence of interface roughness, elastic, inelastic, and diffusive interactions with the environment. We show that a wall surface roughness does not necessarily involve time irreversibility. The dynamics of the packet is indeed influenced, but remains coherent, until the boundaries of the system begin to absorb information from the system. Finally, it is shown that in the presence of inelastic scattering or diffusive processes, the time-reversibility of a quantum system is destroyed, whatever the shape of the wall interface is. In particular, we show that the random nature of a process, elastic or inelastic, is responsible for the appearance of quantum decoherence.

1.
R.
Rosati
,
F.
Dolcini
,
R. C.
Iotti
, and
F.
Rossi
,
Phys. Rev. B
88
,
035401
(
2013
).
2.
B.
Vacchini
and
K.
Hornberger
,
Eur. Phys. J. Spec. Top.
151
,
59
72
(
2007
).
3.
J. J.
Halliwell
,
J. Phys. A, Math. Theor.
40
,
3067
3080
(
2007
).
4.
P.
Schwaha
,
D.
Querlioz
,
P.
Dollfus
,
J.
Saint-Martin
,
M.
Nedjalkov
, and
S.
Selberherr
,
J. Comput. Electron.
12
,
388
396
(
2013
).
5.
D.
Querlioz
,
J.
Saint-Martin
, and
P.
Dollfus
,
J. Comput. Electron.
9
,
224
231
(
2010
).
6.
P.
Schwaha
,
M.
Nedjalkov
,
S.
Selberherr
, and
I.
Dimov
, in
LSSC Conference Proceeding
(Springer,
2011
), pp.
472
479
.
7.
N.
Kluksdahl
,
W.
Potz
,
U.
Ravaioli
, and
D. K.
Ferry
,
Superlattices Microstruct.
3
,
41
45
(
1987
).
8.
W.
Frensley
,
Phys. Rev. B
36
,
1570
(
1987
).
9.
K.-Y.
Kim
and
B.
Lee
,
Solid-State Electron.
43
,
2243
2245
(
1999
).
10.
L.
Shifren
and
D. K.
Ferry
,
Phys. Lett. A
285
,
217
221
(
2001
).
11.
D.
Querlioz
and
P.
Dollfus
,
The Wigner Monte Carlo Method for Nanoelectronic Devices—A Particle Description of Quantum Transport and Decoherence
(
ISTE-Wiley
,
2010
).
12.
M.
Nedjalkov
,
H.
Kosina
,
S.
Selberherr
,
Ch.
Ringhofer
, and
D. K.
Ferry
,
Phys. Rev. B
70
,
115319
(
2004
).
13.
M.
Nedjalkov
,
P.
Schwaha
,
S.
Selberherr
,
J. M.
Sellier
, and
D.
Vasileska
,
Appl. Phys. Lett.
102
,
163113
(
2013
).
14.
J. M.
Sellier
, www.nano-archimedes.com.
15.
P.
Schwaha
,
M.
Nedjalkov
,
S.
Selberherr
, and
I.
Dimov
, in
LSSC 2011, LNCS
(
Springer-Verlag
,
2012
), Vol.
7116
, pp.
472
479
.
17.
G.
Manfredi
and
M. R.
Feix
,
Phys. Rev. E
62
,
4665
(
2000
).
18.
U.
Fano
,
Rev. Mod. Phys.
29
,
74
93
(
1957
).
You do not currently have access to this content.