A series of finite-element simulations have been performed to assess the operational characteristics of a new semiconductor nanowire solar cell design operating under high-level injection conditions. Specifically, the steady-state current-voltage behavior of a cylindrical silicon (Si) nanowire with a series of discrete, ohmic-selective contacts under intense sunlight illumination was investigated. The scope of the analysis was limited to only the factors that impact the net internal quantum yield for solar to electricity conversion. No evaluations were performed with regards to optical light trapping in the modeled structures. Several aspects in a discrete-contact nanowire device that could impact operation were explored, including the size and density of ohmic-selective contacts, the size of the nanowire, the electronic quality and conductivity of the nanowire, the surface defect density of the nanowire, and the type of ohmic selectivity employed at each contact. The analysis showed that there were ranges of values for each parameter that supported good to excellent photoresponses, with certain combinations of experimentally attainable material properties yielding internal energy conversion efficiencies at the thermodynamic limit for a single junction cell. The merits of the discrete-contact nanowire cell were contrasted with “conventional” nanowire photovoltaic cells featuring a uniform conformal contact and also with planar point-contact solar cells. The unique capacity of the discrete-contact nanowire solar cell design to operate at useful energy conversion efficiencies with low quality semiconductor nanowires (i.e., possessing short charge-carrier lifetimes) with only light doping is discussed. This work thus defines the impetus for future experimental work aimed at developing this photovoltaic architecture.

1.
E.
Garnett
and
P. D.
Yang
,
Nano Lett.
10
,
1082
1087
(
2010
).
2.
A. I.
Carim
,
S. M.
Collins
,
J. M.
Foley
, and
S.
Maldonado
,
J. Am. Chem. Soc.
133
,
13292
13295
(
2011
).
3.
L.
Yu
,
B.
O'Donnell
,
P.-J.
Alet
,
S.
Conesa-Boj
,
F.
Peiro
,
J.
Arbiol
, and
P. R.
Cabarrocas
,
Nanotechnology
20
,
225604
(
2009
).
4.
M. D.
Kelzenberg
,
D. B.
Turner-Evans
,
B. M.
Kayes
,
M. A.
Filler
,
M. C.
Putnam
,
N. S.
Lewis
, and
H. A.
Atwater
,
Nano Lett.
8
,
710
714
(
2008
).
5.
E.
Garnett
,
M. L.
Brongersma
,
Y.
Cui
, and
M.
McGehee
,
Annu. Rev. Mater. Res.
41
,
269
295
(
2011
).
6.
W.
Lu
,
C.
Wang
,
W.
Yue
, and
L.
Chen
,
Nanoscale
3
,
3631
3634
(
2011
).
7.
J. R.
Maiolo
,
B. M.
Kayes
,
M. A.
Filler
,
M. C.
Putnam
,
M. D.
Kelzenberg
,
H. A.
Atwater
, and
N. S.
Lewis
,
J. Am. Chem. Soc.
129
,
12346
12347
(
2007
).
8.
E. A.
Dalchiele
,
F.
Martin
,
D.
Leinen
,
R. E.
Marotti
, and
J. R.
Ramos-Barrado
,
J. Electrochem. Soc.
156
,
K77
K81
(
2009
).
9.
S.
Hu
,
C. Y.
Chi
,
K. T.
Fountaine
,
M.
Yao
,
H. A.
Atwater
,
P. D.
Dapkus
,
N. S.
Lewis
, and
C.
Zhou
,
Energy Environ. Sci.
6
,
1879
1890
(
2013
).
10.
C.
Liu
,
J.
Sun
,
J.
Tang
, and
P. D.
Yang
,
Nano Lett.
12
,
5407
5411
(
2012
).
11.
J. D.
Christesen
,
X.
Zhang
,
C. W.
Pinion
,
T. A.
Celano
,
C. J.
Flynn
, and
J. F.
Cahoon
,
Nano Lett.
12
,
6024
6029
(
2012
).
12.
M. D.
Kelzenberg
,
D. B.
Turner-Evans
,
M. C.
Putnam
,
S. W.
Boettcher
,
R. M.
Briggs
,
J. Y.
Baek
,
N. S.
Lewis
, and
H. A.
Atwater
,
Energy Environ. Sci.
4
,
866
871
(
2011
).
13.
B. M.
Kayes
,
H. A.
Atwater
, and
N. S.
Lewis
,
J. Appl. Phys.
97
,
114302
(
2005
).
14.
E. C.
Garnett
and
P.
Yang
,
J. Am. Chem. Soc.
130
,
9224
9225
(
2008
).
15.
B.
Tian
,
T. J.
Kempa
, and
C. M.
Lieber
,
Chem. Soc. Rev.
38
,
16
24
(
2009
).
16.
T. J.
Kempa
,
B. Z.
Tian
,
D. R.
Kim
,
J. S.
Hu
,
X. L.
Zheng
, and
C. M.
Lieber
,
Nano Lett.
8
,
3456
3460
(
2008
).
17.
J.
Wallentin
,
N.
Anttu
,
D.
Asoli
,
M.
Huffman
,
I.
Aberg
,
M. H.
Magnusson
,
G.
Siefer
,
P.
Fuss-Kailuweit
,
F.
Dimroth
,
B.
Witzigmann
,
H. Q.
Xu
,
L.
Samuelson
,
K.
Deppert
, and
M. T.
Borgstrom
,
Science
339
,
1057
1060
(
2013
).
18.
J. M.
Foley
,
M. J.
Price
,
J. I.
Feldblyum
, and
S.
Maldonado
,
Energy Environ. Sci.
5
,
5203
5220
(
2012
).
19.
R. R.
LaPierre
,
J. Appl. Phys.
109
,
034311
(
2011
).
20.
S.
Yu
,
F.
Roemer
, and
B.
Witzigmann
,
J. Photon. Energy
2
,
028002
(
2012
).
21.
M.
Gharghi
,
J. Appl. Phys.
111
,
034501
(
2012
).
22.
P. E.
Gruenbaum
,
R. R.
King
, and
R. M.
Swanson
,
J. Appl. Phys.
66
,
6110
6114
(
1989
).
23.
R. R.
King
,
R. A.
Sinton
, and
R. M.
Swanson
,
Appl. Phys. Lett.
54
,
1460
1462
(
1989
).
24.
R. A.
Sinton
and
R. M.
Swanson
,
IEEE Trans. Electron Devices
34
,
2116
2123
(
1987
).
25.
R. M.
Swanson
,
Point-Contact Silicon Solar Cells
(
Electric Power Research Institute
,
1983
).
26.
R. M.
Swanson
,
S. K.
Beckwith
,
R. A.
Crane
,
W. D.
Eades
,
Y. H.
Kwark
,
R. A.
Sinton
, and
S. E.
Swirhun
,
IEEE Trans. Electron Devices
31
,
661
664
(
1984
).
27.
R. M.
Swanson
,
Sol. Cells
17
,
85
118
(
1986
).
28.
E.
Van Kerschaver
and
G.
Beaucarne
,
Prog. Photovoltaics
14
,
107
123
(
2006
).
29.
T.
Tiedje
,
E.
Yablonovitch
,
G. D.
Cody
, and
B. G.
Brooks
,
IEEE Trans. Electron Devices
31
,
711
716
(
1984
).
30.
R. M.
Swanson
, in Photovoltaic Specialists Conference (
2005
), pp.
889
894
31.
ASTM G 173-03, “Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface,” ASTM International, 2012.
32.
D. E.
Aspnes
and
A. A.
Studna
,
Phys. Rev. B
27
,
985
1009
(
1983
).
33.
M.
Law
,
J.
Goldberger
, and
P. D.
Yang
,
Annu. Rev. Mater. Res.
34
,
83
122
(
2004
).
34.
E.
Yablonovitch
and
T. J.
Gmitter
,
Solid-State Electron.
35
,
261
267
(
1992
).
35.
K.
Hagedorn
,
C.
Forgacs
,
S.
Collins
, and
S.
Maldonado
,
J. Phys. Chem. C
114
,
12010
12017
(
2010
).
36.
A.
Fitch
,
N. C.
Strandwitz
,
B. S.
Brunschwig
, and
N. S.
Lewis
,
J. Phys. Chem. C
117
,
2008
2015
(
2013
).
37.
Y.
Cui
,
Z.
Zhong
,
D.
Wang
,
W. U.
Wang
, and
C. M.
Lieber
,
Nano Lett.
3
,
149
152
(
2003
).
38.
W. I.
Park
,
G.
Zheng
,
X.
Jiang
,
B.
Tian
, and
C. M.
Lieber
,
Nano Lett.
8
,
3004
3009
(
2008
).
39.
R.
Lin
,
M.
Bammerlin
,
O.
Hansen
,
R. R.
Schlittler
, and
P.
Boggild
,
Nanotechnology
15
,
1363
1367
(
2004
).
40.
H. J.
Lewerenz
,
Electrochim. Acta
56
,
10726
10736
(
2011
).
41.
H. J.
Lewerenz
,
Electrochim. Acta
56
,
10713
10725
(
2011
).
42.
J. K.
Mann
,
R.
Kurstjens
,
G.
Pourtois
,
M.
Gilbert
,
F.
Dross
, and
J.
Poortamans
,
Prog. Mater. Sci.
58
,
1361
1387
(
2013
).
43.
J.
Huang
,
S. Y.
Chiam
,
H. H.
Tan
,
S.
Wang
, and
W. K.
Chim
,
Chem. Mater.
22
,
4111
4116
(
2010
).
44.
Z.
Huang
,
N.
Geyer
,
P.
Werner
,
J.
Boor
, and
U.
Gosele
,
Adv. Mater. (Weinheim, Ger.)
23
,
285
308
(
2011
).
45.
S.
Fonash
,
Solar Cell Device Physics
, 2nd ed. (
Academic Press
,
Burlington, MA
,
2010
).
46.
N. S.
Lewis
,
Annu. Rev. Phys. Chem.
42
,
543
580
(
1991
).
47.
See supplementary material at http://dx.doi.org/10.1063/1.4826361 for the origin of Eq. (3), a description of the TCAD Sentaurus simulation mesh utilized in this work, the expressions used to simulate Auger, Shockley-Read-Hall and radiative recombination, tables detailing the default simulation parameters for the simulations in this work, the steady-state Φ–V curves for discrete contact nanowire solar cells as a function of τSRH, the steady-state Φ–V curves for discrete contact nanowire solar cells as a function of S, the steady-state Φ–V curves for discrete contact nanowire solar cells as a function of r0, and the steady-state Φ–V curves for discrete contact nanowire solar cells as a function of S for undoped ohmic-selective contacts with γ = 108.

Supplementary Material

You do not currently have access to this content.