We study by molecular dynamics simulations the effect of vacancy defects on mechanical properties of double-walled carbon nanotubes (DWCNTs) under compression and bending. Our results show that the critical buckling strain under compression and critical buckling angle under bending generally decrease with increasing defect density, but the detailed buckling behavior is sensitive to defect distribution patterns (e.g., whether vacancies are on the inner or outer wall, at separate sites or clustered together). Interestingly, upon high-temperature annealing, vacancy defects undergo structural reconstructions and, in particular, form interlayer bonds that significantly improve the load carrying capability of the DWCNTs under compressive and bending deformation. These results provide new insights into the role of vacancy defects in determining the buckling behavior of multi-walled carbon nanotubes (MWCNTs); they also suggest that high-temperature annealing is an effective tool for defect engineering to improve mechanical properties of MWCNTs. The present study reveals trends and underlying mechanisms with regard to the buckling of DWCNTs under different loading conditions, and the obtained results may provide a useful guide for post-synthesis treatment and application of MWCNTs.
Skip Nav Destination
Article navigation
7 November 2013
Research Article|
November 06 2013
Buckling of double-walled carbon nanotubes under compression and bending: Influence of vacancy defects and effect of high-temperature annealing
William Wolfs;
William Wolfs
1
Department of Physics and Astronomy and High Pressure Science and Engineering Center, University of Nevada
, Las Vegas, Nevada 89154, USA
Search for other works by this author on:
Chun Tang;
Chun Tang
a)
1
Department of Physics and Astronomy and High Pressure Science and Engineering Center, University of Nevada
, Las Vegas, Nevada 89154, USA
2
School of Engineering, University of California
, Merced, California 95343, USA
Search for other works by this author on:
Changfeng Chen
Changfeng Chen
b)
1
Department of Physics and Astronomy and High Pressure Science and Engineering Center, University of Nevada
, Las Vegas, Nevada 89154, USA
Search for other works by this author on:
a)
Electronic mail: tangchun@physics.unlv.edu
b)
Electronic mail: chen@physics.unlv.edu
J. Appl. Phys. 114, 174308 (2013)
Article history
Received:
August 14 2013
Accepted:
October 23 2013
Citation
William Wolfs, Chun Tang, Changfeng Chen; Buckling of double-walled carbon nanotubes under compression and bending: Influence of vacancy defects and effect of high-temperature annealing. J. Appl. Phys. 7 November 2013; 114 (17): 174308. https://doi.org/10.1063/1.4829486
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00