Single-layer blue phosphorescence organic light emitting diodes (OLEDs) with either small-molecule or polymer hosts are fabricated using solution process and the performances of devices with different hosts are investigated. The small-molecule device exhibits luminous efficiency of 14.7 cd/A and maximum power efficiency of 8.39 lm/W, which is the highest among blue phosphorescence OLEDs with single-layer solution process and small molecular hosts. Using the same solution process for all devices, comparison of light out-coupling enhancement, with brightness enhancement film (BEF), between small-molecule and polymer based OLEDs is realized. Due to different dipole orientation and anisotropic refractive index, polymer-based OLEDs would trap less light than small molecule-based OLEDs internally, about 37% better based simulation results. In spite of better electrical and spectroscopic characteristics, including ambipolar characteristics, higher carrier mobility, higher photoluminescence quantum yield, and larger triplet state energy, the overall light out-coupling efficiency of small molecule-based devices is worse than that of polymer-based devices without BEF. However, with BEF for light out-coupling enhancement, the improved ratio in luminous flux and luminous efficiency for small molecule based device is 1.64 and 1.57, respectively, which are significantly better than those of PVK (poly-9-vinylcarbazole) devices. In addition to the theoretical optical simulation, the experimental data also confirm the origins of differential light-outcoupling enhancement. The maximum luminous efficiency and power efficiency are enhanced from 14.7 cd/A and 8.39 lm/W to 23 cd/A and 13.2 lm/W, respectively, with laminated BEF, which are both the highest so far for single-layer solution-process blue phosphorescence OLEDs with small molecule hosts.

1.
Y.-H.
Ho
,
C.-C.
Liu
,
S.-W.
Liu
,
H.
Liang
,
C.-W.
Chu
, and
P.-K.
Wei
,
Opt. Express
19
,
A295
(
2011
).
2.
S.
Reineke
,
F.
Lindner
,
G.
Schwartz
,
N.
Seidler
,
K.
Walzer
,
B.
Lüssem
, and
K.
Leo
,
Nature
459
,
234
(
2009
).
3.
M. G.
Helander
,
Z. B.
Wang
,
J.
Qiu
,
M. T.
Greiner
,
D. P.
Puzzo
,
Z. W.
Liu
, and
Z. H.
Lu
,
Science
332
,
944
(
2011
).
4.
T.-W.
Koh
,
J.-M.
Choi
,
S.
Lee
, and
S.
Yoo
,
Adv. Mater.
22
,
1849
(
2010
).
5.
Y.-H.
Ho
,
K.-Y.
Chen
,
S.-W.
Liu
,
Y.-T.
Chang
,
D.-W.
Huang
, and
P.-K.
Wei
,
Org. Electron.
12
,
961
(
2011
).
6.
K.
Saxena
,
V. K.
Jain
, and
D. S.
Mehta
,
Opt. Mater.
32
,
221
(
2009
).
7.
Y.
Sun
and
S. R.
Forrest
,
Nat. Photonics
2
,
483
(
2008
).
8.
S.-Y.
Hsu
,
M.-C.
Lee
,
K.-L.
Lee
, and
P.-K.
Wei
,
Appl. Phys. Lett.
92
,
013303
(
2008
).
9.
B. C.
Krummacher
,
M.
Mathai
,
F.
So
,
S.
Choulis
, and
C.
Vi-En
,
J. Disp. Technol.
3
,
200
(
2007
).
10.
B. C.
Krummacher
,
M. K.
Mathai
,
V.
Choong
,
S. A.
Choulis
,
F.
So
, and
A.
Winnacker
,
J. Appl. Phys.
100
,
054702
(
2006
).
11.
J. M.
Ziebarth
,
A. K.
Saafir
,
S.
Fan
, and
M. D.
McGehee
,
Adv. Funct. Mater.
14
,
451
(
2004
).
12.
J. M.
Lupton
,
B. J.
Matterson
,
I. D. W.
Samuel
,
M. J.
Jory
, and
W. L.
Barnes
,
Appl. Phys. Lett.
77
,
3340
(
2000
).
13.
G.
Fichet
,
N.
Corcoran
,
P. K. H.
Ho
,
A. C.
Arias
,
J. D.
MacKenzie
,
W. T. S.
Huck
, and
R. H.
Friend
,
Adv. Mater.
16
,
1908
(
2004
).
14.
A. M.
Adawi
,
L. G.
Connolly
,
D. M.
Whittaker
,
D. G.
Lidzey
,
E.
Smith
,
M.
Roberts
,
F.
Qureshi
,
C.
Foden
, and
N.
Athanassopoulou
,
J. Appl. Phys.
99
,
054505
(
2006
).
15.
J. D.
Swalen
,
R.
Santo
,
M.
Tacke
, and
J.
Fischer
,
IBM J. Res. Dev.
21
,
168
(
1977
).
16.
O.
Watanabe
,
M.
Tsuchimori
,
A.
Okada
, and
H.
Ito
,
Appl. Phys. Lett.
71
,
750
(
1997
).
17.
M.
Campoy-Quiles
,
J.
Nelson
,
P. G.
Etchegoin
,
D. D. C.
Bradley
,
V.
Zhokhavets
,
G.
Gobsch
,
H.
Vaughan
,
A.
Monkman
,
O.
Ingänas
,
N. K.
Persson
,
H.
Arwin
,
M.
Garriga
,
M. I.
Alonso
,
G.
Herrmann
,
M.
Becker
,
W.
Scholdei
,
M.
Jahja
, and
C.
Bubeck
,
Phys. Status Solidi C
5
,
1270
(
2008
).
18.
W. M. V.
Wan
,
N. C.
Greenham
, and
R. H.
Friend
,
J. Appl. Phys.
87
,
2542
(
2000
).
19.
W. M. V.
Wan
,
R. H.
Friend
, and
N. C.
Greenham
,
Thin Solid Films
363
,
310
(
2000
).
20.
J.-S.
Kim
,
P. K. H.
Ho
,
N. C.
Greenham
, and
R. H.
Friend
,
J. Appl. Phys.
88
,
1073
(
2000
).
21.
M.
Flämmich
,
M. C.
Gather
,
N.
Danz
,
D.
Michaelis
,
A. H.
Bräuer
,
K.
Meerholz
, and
A.
Tünnermann
,
Org. Electron.
11
,
1039
(
2010
).
22.
J.-H.
Jou
,
W.-B.
Wang
,
S.-Z.
Chen
,
J.-J.
Shyue
,
M.-F.
Hsu
,
C.-W.
Lin
,
S.-M.
Shen
,
C.-J.
Wang
,
C.-P.
Liu
,
C.-T.
Chen
,
M.-F.
Wu
, and
S.-W.
Liu
,
J. Mater. Chem.
20
,
8411
(
2010
).
23.
T.
Tsuboi
,
S.-W.
Liu
,
M.-F.
Wu
, and
C.-T.
Chen
,
Org. Electron.
10
,
1372
(
2009
).
24.
L.
Lin
,
T. K.
Shia
, and
C. J.
Chiu
,
J. Micromech. Microeng.
10
,
395
(
2000
).
25.
T.
Nakamura
,
N.
Tsutsumi
,
N.
Juni
, and
H.
Fujii
,
J. Appl. Phys.
96
,
6016
(
2004
).
26.
M. H.
Lu
and
J. C.
Sturm
,
J. Appl. Phys.
91
,
595
(
2002
).
27.
C.-C.
Wu
,
C.-L.
Lin
,
P.-Y.
Hsieh
, and
H.-H.
Chiang
,
Appl. Phys. Lett.
84
,
3966
(
2004
).
28.
C.-L.
Lin
,
T.-Y.
Cho
,
C.-H.
Chang
, and
C.-C.
Wu
,
Appl. Phys. Lett.
88
,
081114
(
2006
).
29.
M.-H.
Lu
and
J. C.
Sturm
,
Appl. Phys. Lett.
78
,
1927
(
2001
).
30.
K.-Y.
Chen
,
Y.-T.
Chang
,
Y.-H.
Ho
,
H.-Y.
Lin
,
J.-H.
Lee
, and
M.-K.
Wei
,
Opt. Express
18
,
3238
(
2010
).
31.
S.-Y.
Kim
and
J.-J.
Kim
,
Org. Electron.
11
,
1010
(
2010
).
32.
K.-Y.
Chen
,
J.-H.
Lee
,
M.-K.
Wei
,
Y.-T.
Chang
,
Y.-H.
Ho
,
J.-R.
Lin
, and
H. Y.
Lin
,
J. Soc. Inf. Disp.
19
,
21
(
2011
).
33.
S.-W.
Liu
,
Y.-T.
Chang
,
C.-C.
Lee
,
C.-H.
Yuan
,
L.-A.
Liu
,
Y.-S.
Chen
,
C.-F.
Lin
,
C.-I.
Wu
, and
C.-T.
Chen
,
Jpn. J. Appl. Phys.
52
,
012101
(
2013
).
34.
S.-W.
Liu
,
C.-H.
Yuan
,
S.-J.
Yeh
,
M.-F.
Wu
,
C.-T.
Chen
, and
C.-C.
Lee
,
J. Soc. Inf. Disp.
19
,
346
(
2011
).
35.
P. E.
Burrows
,
Z.
Shen
,
V.
Bulovic
,
D. M.
McCarty
,
S. R.
Forrest
,
J. A.
Cronin
, and
M. E.
Thompson
,
J. Appl. Phys.
79
,
7991
(
1996
).
36.
P. W. M.
Blom
,
M. J. M.
d. Jong
, and
J. J. M.
Vleggaar
,
Appl. Phys. Lett.
68
,
3308
(
1996
).
37.
A. J.
Campbell
,
D. D. C.
Bradley
, and
D. G.
Lidzey
,
J. Appl. Phys.
82
,
6326
(
1997
).
38.
M. J.
Harding
,
D.
Poplavskyy
,
V. E.
Choong
,
A. J.
Campbell
, and
F.
So
,
Org. Electron.
9
,
183
(
2008
).
39.
M. K.
Mathai
,
V.-E.
Choong
,
S. A.
Choulis
,
B.
Krummacher
, and
F.
So
,
Appl. Phys. Lett.
88
,
243512
(
2006
).
40.
W.
Jiang
,
L.
Duan
,
J.
Qiao
,
G.
Dong
,
L.
Wang
, and
Y.
Qiu
,
Org. Lett.
13
,
3146
(
2011
).
41.
V.
Bulovi
,
V.
Khalfin
,
G.
Gu
,
P.
Burrows
,
D.
Garbuzov
, and
S.
Forrest
,
Phys. Rev. B
58
,
3730
(
1998
).
42.
T.
Nakamura
,
N.
Tsutsumi
,
N.
Juni
, and
H.
Fujii
,
J. Appl. Phys.
97
,
054505
(
2005
).
43.
T.
Nakamura
,
H.
Fujii
,
N.
Juni
, and
N.
Tsutsumi
,
Opt. Rev.
13
,
104
(
2006
).
44.
J.
Lee
,
N.
Chopra
, and
F.
So
,
Appl. Phys. Lett.
92
,
033303
(
2008
).
45.
B.
Krummacher
,
M. K.
Mathai
,
V.-E.
Choong
,
S. A.
Choulis
,
F.
So
, and
A.
Winnacker
,
Org. Electron.
7
,
313
(
2006
).
46.
C.-C.
Liu
,
S.-H.
Liu
,
K.-C.
Tien
,
M.-H.
Hsu
,
H.-W.
Chang
,
C.-K.
Chang
,
C.-J.
Yang
, and
C.-C.
Wu
,
Appl. Phys. Lett.
94
,
103302
(
2009
).
47.
C.-J.
Yang
,
S.-H.
Liu
,
H.-H.
Hsieh
,
C.-C.
Liu
,
T.-Y.
Cho
, and
C.-C.
Wu
,
Appl. Phys. Lett.
91
,
253508
(
2007
).
48.
Y.-T.
Chang
,
S.-W.
Liu
,
C.-T.
Chen
,
C.-H.
Yuan
,
L.-A.
Liu
,
Y.-S.
Chen
,
W.-C.
Su
,
K.-L.
Lee
,
C.-I.
Wu
, and
C.-C.
Lee
,
J. Appl. Phys.
112
,
084507
(
2012
).
49.
See supplementary material at http://dx.doi.org/10.1063/1.4829677 for details of simulation methods.
50.
M.
Flämmich
,
J.
Frischeisen
,
D. S.
Setz
,
D.
Michaelis
,
B. C.
Krummacher
,
T. D.
Schmidt
,
W.
Brütting
, and
N.
Danz
,
Org. Electron.
12
,
1663
(
2011
).

Supplementary Material

You do not currently have access to this content.