FePt thin films with a thickness of 30 nm were deposited by dc magnetron sputtering at room temperature onto SiO2(100 nm)/Si(100) substrates. These films were post-annealed in a temperature range of 500 °C to 900 °C for 30 s in three different atmospheres—N2, Ar, and forming gas (Ar+H2 (3 vol. %)). Irrespective of the annealing atmosphere, the chemically ordered L10 FePt phase has formed after annealing at 500 °C. Higher annealing temperatures in N2 or Ar atmosphere resulted in a strong increase in grain size and surface roughness but also in the appearance of a pronounced (001) texture in the FePt films. However, these films show the presence of iron oxide. In contrast, annealing in forming gas atmosphere suppressed the oxidation process and resulted in a reduced grain size and lower surface roughness. However, no (001)—but a strong (111)—texture was obtained after annealing at 700 °C, which might be related to the reduced unit cell tetragonality and incorporation of hydrogen to the FePt lattice. Thus, this study clearly demonstrates that the oxygen/hydrogen content plays an important role in controlling the crystallographic orientation during post-annealing.

1.
D.
Weller
,
O.
Mosendz
,
G.
Parker
,
S.
Pisana
, and
T. S.
Santos
,
Phys. Status Solidi A
210
,
1245
(
2013
).
2.
J.
Lyubina
,
B.
Rellinghaus
,
O.
Gutfleisch
, and
M.
Albrecht
, “
Structure and magnetic properties of L10-ordered Fe-Pt alloys and nanoparticles
,” in
Handbook of Magnetic Materials
, edited by
K. H. J.
Buschow
(
Elsevier
,
2011
), Vol.
19
, pp.
291
395
.
3.
Y.
Shiroishi
,
K.
Fukuda
,
I.
Tagawa
,
H.
Iwasaki
,
S.
Takenoiri
,
H.
Tanaka
,
H.
Mutoh
, and
N.
Yoshikawa
,
IEEE Trans. Magn.
45
,
3816
(
2009
).
4.
Development in Data Storage, Materials Perspective
, edited by
S. N.
Piramanayagam
and
T. C.
Chong
(
John Wiley & Sons, Inc.
,
New York
,
2012
).
5.
P.
Rasmussen
,
X.
Rui
, and
J. E.
Shield
,
Appl. Phys. Lett.
86
,
191915
(
2005
).
6.
T.
Narisawa
,
T.
Hasegawa
,
S.
Ishio
, and
Y.
Yamane
,
J. Appl. Phys.
109
,
033918
(
2011
).
7.
S. N.
Hsiao
,
S. H.
Liu
,
S. K.
Chen
,
T. S.
Chin
, and
H. Y.
Lee
,
Appl. Phys. Lett.
100
,
261909
(
2012
).
8.
C.
Brombacher
,
C.
Schubert
,
K.
Neupert
,
M.
Kehr
,
J.
Donges
, and
M.
Albrecht
,
J. Phys. D, Appl. Phys.
44
,
355001
(
2011
).
9.
J. S.
Kim
,
Y. M.
Koo
, and
N.
Shin
,
J. Appl. Phys.
100
,
093909
(
2006
).
10.
S. N.
Hsiao
,
F. T.
Yuan
,
H. W.
Chang
,
H. W.
Huang
,
S. K.
Chen
, and
H. Y.
Lee
,
Appl. Phys. Lett.
94
,
232505
(
2009
).
11.
L.-W.
Wang
,
W.-C.
Shih
,
Y.-C.
Wu
, and
C.-H.
Lai
,
Appl. Phys. Lett.
101
,
252403
(
2012
).
12.
M.
Albrecht
and
C.
Brombacher
,
Phys. Status Solidi A
210
,
1272
1281
(
2013
).
13.
W. B.
Mi
,
E. Y.
Jiang
, and
H. L.
Bai
,
J. Appl. Phys.
99
,
034315
(
2006
).
14.
V.
Phatak
,
A.
Gupta
,
V. R.
Reddy
,
S.
Chakravarty
,
H.
Schmidt
, and
R.
Rüffer
,
Acta Mater.
58
,
979
(
2010
).
15.
Y.
Tran
and
C. D.
Wright
,
J. Magn. Magn. Mater.
331
,
216
(
2013
).
16.
C. H.
Lai
,
Y. C.
Wu
, and
C. C.
Chiang
,
J. Appl. Phys.
97
,
10H305
(
2005
).
17.
K. R.
Coffey
,
M. A.
Parker
, and
J. K.
Howard
,
IEEE Trans. Magn.
31
,
2737
(
1995
).
18.
T. S.
Vedantam
,
J. P.
Liu
,
H.
Zeng
, and
S.
Sun
,
J. Appl. Phys.
93
,
7184
(
2003
).
19.
K.
Leistner
,
J.
Thomas
,
H.
Schlörb
,
M.
Weisheit
,
L.
Schultz
, and
S.
Fähler
,
Appl. Phys. Lett.
85
,
3498
(
2004
).
20.
R.
Maaß
,
M.
Weisheit
,
S.
Fähler
, and
L.
Schultz
,
J. Appl. Phys.
100
,
073910
(
2006
).
21.
W. A.
Dollase
,
J. Appl. Crystallogr.
19
,
267
272
(
1986
).
22.
J. F.
Moulder
and
J.
Chastain
,
Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data
(
Physical Electronics Division, Perkin-Elmer Corp
,
Eden Prairie, Minnesota
,
1992
).
23.
J. S.
Chen
,
B. C.
Lim
, and
J. P.
Wang
,
Appl. Phys. Lett.
81
,
1848
(
2002
).
You do not currently have access to this content.