We present the Quantum Computer Aided Design (QCAD) simulator that targets modeling multi-dimensional quantum devices, particularly silicon multi-quantum dots (QDs) developed for quantum bits (qubits). This finite-element simulator has three differentiating features: (i) its core contains nonlinear Poisson, effective mass Schrodinger, and Configuration Interaction solvers that have massively parallel capability for high simulation throughput and can be run individually or combined self-consistently for 1D/2D/3D quantum devices; (ii) the core solvers show superior convergence even at near-zero-Kelvin temperatures, which is critical for modeling quantum computing devices; and (iii) it interfaces directly with the full-featured optimization engine Dakota. In this work, we describe the capabilities and implementation of the QCAD simulation tool and show how it can be used to both analyze existing experimental QD devices through capacitance calculations and aid in the design of few-electron multi-QDs. In particular, we observe that computed capacitances are in rough agreement with experiment, and that quantum confinement increases capacitance when the number of electrons is fixed in a quantum dot. Coupling of QCAD with the optimizer Dakota allows for rapid identification and improvement of device layouts that are likely to exhibit few-electron quantum dot characteristics.

1.
A.
Morello
,
J. J.
Pla
 et al.,
Nature
467
,
687
(
2010
).
2.
M. G.
Borselli
,
K.
Eng
 et al.,
Appl. Phys. Lett.
99
,
063109
(
2011
).
3.
W. H.
Lim
,
C. H.
Yang
,
F. A.
Zwanenburg
, and
A. S.
Dzurak
,
Nanotechnology
22
,
335704
(
2011
).
4.
G.
Yamahata
,
T.
Kodera
,
H. O. H.
Churchill
,
K.
Uchida
,
C. M.
Marcus
, and
S.
Oda
,
Phys. Rev. B
86
,
115322
(
2012
).
5.
L. A.
Tracy
,
E. P.
Nordberg
 et al.,
Appl. Phys. Lett.
97
,
192110
(
2010
).
6.
T. M.
Lu
,
N. C.
Bishop
 et al.,
Appl. Phys. Lett.
99
,
043101
(
2011
).
7.
E. A.
Laird
,
J. M.
Taylor
,
D. P.
DiVincenzo
,
C. M.
Marcus
,
M. P.
Hanson
, and
A. C.
Gossard
,
Phys. Rev. B
82
,
075403
(
2010
).
8.
T. S.
Koh
,
J. K.
Gamble
,
M.
Friesen
,
M. A.
Eriksson
, and
S. N.
Coppersmith
,
Phys. Rev. Lett.
109
,
250503
(
2012
).
10.
S. N.
Milicic
,
F.
Badrieh
,
D.
Vasileska
,
A.
Gunther
, and
S. M.
Goodnick
,
Superlattices Microstruct.
27
,
377
(
2000
).
11.
M.
Friesen
,
P.
Rugheimer
,
D. E.
Savage
,
M. G.
Lagally
,
D. W.
Weide
,
R.
Joynt
, and
M. A.
Eriksson
,
Phys. Rev. B
67
,
121301
(
2003
).
12.
D. V.
Melnikov
,
J.
Kim
,
L. X.
Zhang
, and
J. P.
Leburton
,
IEE Proc.: Circuits Devices Syst.
152
,
377
(
2005
).
13.
B.
Muralidharan
,
H.
Ryu
,
Z.
Huang
, and
G.
Klimeck
,
J. Comput. Electron.
7
,
403
(
2008
).
14.
Sentauru Device User Guide, Version D-2010.03, Synopsys Inc., see http://www.quantumwise.com/.
15.
See http://www.nanohub.org/ for SCHRED.
16.
See http://trilinos.sandia.gov , http://dakota.sandia.gov, and http://cubit.sandia.gov for Trilinos, Dakota, and Cubit, respectively.
17.
A. G.
Salinger
,
R. P.
Pawlowski
 et al., “
Albany: A Component-Based Partial Differential Equation Code Built on Trilinos
,”
ACM Trans. Math. Softw.
(to be published).
18.
X.
Gao
,
E.
Nielsen
,
R. P.
Muller
,
R. W.
Young
,
A. G.
Salinger
,
N. C.
Bishop
, and
M. S.
Carroll
, in
Proceedings of 15th International Workshop on Computational Electronics (IWCE)
, DOI: (
2012
), pp.
1
4
.
19.
E.
Nielsen
and
R. P.
Muller
, e-print arXiv:1006.2735.
20.
C. R.
Anderson
,
J. Comput. Phys.
228
,
4745
(
2009
).
21.
N.
Mohankumar
and
A.
Natarajan
,
Phys. Status Solidi B
188
,
635
(
1995
).
22.
J. S.
Blakemore
,
Solid-State Electron.
25
,
1067
(
1982
).
23.
See, for example, http://mathworld.wolfram.com/Polylogarithm.html, for the Polylogarithm form of the Fermi-Dirac integral.
24.
R.
Kim
and
M.
Lunstrom
, e-print arXiv:0811.0116.
25.
W. H.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes: The Art of Scientific Computing
, 3rd ed. (
Cambridge University Press
,
2007
).
26.
D.
Bednarczyk
and
J.
Bednarczyk
,
Phys. Lett. A
64
,
409
(
1978
).
27.
P.
Van Halen
and
D. L.
Pulfrey
,
J. Appl. Phys.
57
,
5271
(
1985
);
P.
Van Halen
and
D. L.
Pulfrey
,
J. Appl. Phys.
59
,
2264
(
1986
).
28.
D.
Vasileska
, Solving the Effective Mass Schrodinger Equation in State-of-the-Art Devices, see http://nanohub.org.
29.
M. S.
Lundstrom
,
R. J.
Schwartz
, and
J. L.
Gray
,
Solid-State Electron.
24
,
195
(
1981
).
30.
I. H.
Tan
,
G. L.
Snider
,
L. D.
Chang
, and
E. L.
Hu
,
J. Appl. Phys.
68
,
4071
(
1990
).
31.
S. M.
Sze
and
K. K.
Ng
,
Physics of Semiconductor Devices
, 3rd ed. (
John Wiley and Sons Ltd.
,
2007
).
32.
A.
Trellakis
and
U.
Ravaioli
,
Comput. Methods Appl. Mech. Eng.
181
,
437
(
2000
).
33.
N. G.
Nilsson
,
Phys. Status Solidi A
19
,
K75
(
1973
).
34.
R. B.
Guenther
and
J. W.
Lee
,
Partial Differential Equations of Mathematical Physics and Integral Equations
(
Dover Publications, Inc.
,
1996
).
35.
P.
Harrison
,
Quantum Wells, Wires and Dots
, 2nd ed. (
John Wiley and Sons Ltd.
,
2005
).
36.
L.
Hedin
and
B. I.
Lundqvist
,
J. Phys. C
4
,
2064
(
1971
).
37.
F.
Stern
and
S.
Das Sarma
,
Phys. Rev. B
30
,
840
(
1984
).
38.
A.
Trellakis
and
U.
Ravaioli
,
Solid State Electron.
48
,
367
(
2004
).
40.
C.
Moglestue
,
J. Appl. Phys.
59
,
3175
(
1986
).
41.
S. E.
Laux
and
A. C.
Warren
,
Tech. Dig. - Int. Electron Devices Meet.
567
(
1986
).
42.
T.
Kerkhoven
,
A. G.
Galick
,
U.
Ravaioli
,
J. H.
Arends
, and
Y.
Saad
,
J. Appl. Phys.
68
,
3461
(
1990
).
43.
J.
Sune
,
P.
Olivo
, and
B.
Ricco
,
J. Appl. Phys.
70
,
337
(
1991
).
44.
J. H.
Luscombem
,
A. M.
Bouchard
, and
M.
Luban
,
Phys. Rev. B
46
,
10262
(
1992
).
45.
A.
Trellakis
,
A. T.
Galick
,
A.
Pacelli
, and
U.
Ravaioli
,
J. Appl. Phys.
81
,
7880
(
1997
).
46.
A.
Trellakis
,
T.
Andlauer
, and
P.
Vogl
,
Large Scale Scientific Computing
(
Springer-Verlag
,
Berlin, Heidelberg
,
2006
).
47.
R. E.
Bank
and
D. J.
Rose
,
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
17
,
806
(
1980
).
48.
G.
Curatola
and
G.
Iannaccone
,
Comput. Mater. Sci.
28
,
342
(
2003
).
49.
H. R.
Khan
,
D.
Mamaluy
, and
D.
Vasileska
,
IEEE Trans. Electron. Devices
54
,
784
(
2007
).
50.
H.
Wang
,
G.
Wang
,
S.
Chang
, and
Q.
Huang
,
Micro & Nano Lett.
4
,
122
(
2009
).
51.
P. M.
Schneider
and
W. B.
Fowler
,
Phys. Rev. Lett.
36
,
425
(
1976
).
52.
Y. P.
Li
and
W. Y.
Ching
,
Phys. Rev. B
31
,
2172
(
1985
).
53.
S. E.
Laux
and
F.
Stern
,
Appl. Phys. Lett.
49
,
91
(
1986
).
54.
E. P.
Nordberg
,
G. A.
Ten Eyck
 et al.,
Phys. Rev. B
80
,
115331
(
2009
).
55.
G.
Henkelman
,
B. P.
Uberuaga
, and
H.
Jonsson
,
J. Chem. Phys.
113
,
9901
(
2000
).
You do not currently have access to this content.