Graphene revealed a number of unique properties beneficial for electronics. However, graphene does not have an energy band-gap, which presents a serious hurdle for its applications in digital logic gates. The efforts to induce a band-gap in graphene via quantum confinement or surface functionalization have not resulted in a breakthrough. Here we show that the negative differential resistance experimentally observed in graphene field-effect transistors of “conventional” design allows for construction of viable non-Boolean computational architectures with the gapless graphene. The negative differential resistance—observed under certain biasing schemes—is an intrinsic property of graphene, resulting from its symmetric band structure. Our atomistic modeling shows that the negative differential resistance appears not only in the drift-diffusion regime but also in the ballistic regime at the nanometer-scale—although the physics changes. The obtained results present a conceptual change in graphene research and indicate an alternative route for graphene's applications in information processing.

1.
R. C.
Jaeger
and
T. N.
Blalock
,
Microelectronic Circuit Design
(
McGraw-Hill
,
1997
).
2.
The International Technology Roadmap for Semiconductors, 2012.
3.
G.
Bourianoff
,
J. E.
Brewer
,
R.
Cavin
,
J. A.
Hutchby
, and
V.
Zhirnov
,
Computer
41
,
38
46
(
2008
).
4.
V. V.
Zhirnov
and
R. K.
Cavin
,
J. Nanoelectron. Optoelectron.
1
,
52
60
(
2006
).
5.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
,
Science
306
,
666
669
(
2004
).
6.
K. I.
Blotin
,
K. J.
Sikes
,
Z.
Jiang
,
M.
Klima
,
G.
Fudenberg
,
J.
Hone
,
P.
Kim
, and
H. L.
Stormer
,
Solid State Commun.
146
,
351
355
(
2008
).
7.
A. A.
Balandin
,
Nature Mater.
10
,
569
581
(
2011
).
8.
F.
Schwiers
,
Nat. Nanotechnol.
5
,
487
(
2010
).
9.
Y.-M.
Lin
,
K. A.
Jenkins
,
A.
Valdes-Garcia
,
J. P.
Small
,
D. B.
Farmer
, and
P.
Avouris
,
Nano Lett.
9
,
422
426
(
2009
).
10.
F.
Xia
,
D. B.
Farmer
,
Y.-M.
Lin
, and
P.
Avouris
,
Nano Lett.
10
,
715
718
(
2010
).
11.
Y.
Zhang
,
T.
Tang
,
C.
Girit
,
Z.
Hao
,
M. C.
Martin
,
A.
Zettl
,
M. F.
Crommie
,
Y. R.
Shen
, and
F.
Wang
,
Nature
459
,
820
823
(
2009
).
12.
M. Y.
Han
,
B.
Ozyilmaz
,
Y.
Zhang
, and
P.
Kim
,
Phys. Rev. Lett.
98
,
206805
(
2007
).
13.
W.
Zhang
,
C.-T.
Lin
,
K.-K.
Liu
,
T.
Tite
,
C.-Y.
Su
,
C.-H.
Chang
,
Y.-H.
Lee
,
C.-W.
Chu
,
K.-H.
Wei
,
J.-L.
Kuo
, and
L.-J.
Li
,
ACS Nano
5
,
7517
7524
(
2011
).
14.
B. N.
Szafranek
,
D.
Schall
,
M.
Otto
,
D.
Neumaier
, and
H.
Kurz
,
Nano Lett.
11
,
2640
2643
(
2011
).
15.
Z. H.
Ni
,
T.
Yu
,
Y. H.
Lu
,
Y. Y.
Wang
,
Y. P.
Feng
, and
Z. X.
Shen
,
ACS Nano
2
,
2301
2305
(
2008
).
16.
S.-M.
Choi
,
S.-H.
Jhi
, and
Y.-W.
Son
,
Nano Lett.
10
,
3486
3489
(
2010
).
17.
Y.
Song
,
H.-C.
Wu
, and
Y.
Guo
,
Appl. Phys. Lett.
102
,
093118
093122
(
2013
).
18.
V. H.
Nguyen
,
Y. M.
Niquet
, and
P.
Dollfus
,
Semicond. Sci. Technol.
27
,
105018
105024
(
2012
).
19.
Y.
Wu
,
D. B.
Farmer
,
W.
Zhu
,
S.
Han
,
C. D.
Dimitrakopoulos
,
A. A.
Bol
,
P.
Avouris
, and
Y.
Lin
,
ACS Nano
6
,
2610
2616
(
2012
).
20.
G.
Liu
,
W.
Stillman
,
S.
Rumyantsev
,
Q.
Shao
,
M.
Shur
, and
A. A.
Balandin
,
Appl. Phys. Lett.
95
,
033103
033105
(
2009
).
21.
X.
Yang
,
G.
Liu
,
A. A.
Balandin
, and
K.
Mohanram
,
ACS Nano
4
,
5532
5538
(
2010
).
22.
I.
Calizo
,
F.
Miao
,
W.
Bao
,
C. N.
Lau
, and
A. A.
Balandin
,
Appl. Phys. Lett.
91
,
071913
071915
(
2007
).
23.
I.
Calizo
,
W.
Bao
,
F.
Miao
,
C. N.
Lau
, and
A. A.
Balandin
,
Appl. Phys. Lett.
91
,
201904
201906
(
2007
).
24.
S.
Kim
,
J.
Nah
,
I.
Jo
,
D.
Shahrjerdi
,
L.
Colombo
,
Z.
Yao
,
E.
Tutuc
, and
S. K.
Banerjee
,
Appl. Phys. Lett.
94
,
062107
062109
(
2009
).
25.
C. R.
Dean
,
A. F.
Young
,
I.
Meric
,
C.
Lee
,
L.
Wang
,
S.
Sorgenfrei
,
K.
Watanabe
,
T.
Taniguchi
,
P.
Kim
,
K. L.
Shepard
, and
J.
Hone
,
Nat. Nanotechnol.
5
,
722
726
(
2010
).
26.
A.
Rahman
,
J.
Guo
,
S.
Datta
, and
M. S.
Lundstrom
,
IEEE Trans. Electron Devices
50
,
1853
1864
(
2003
).
27.
L. O.
Chua
and
L.
Yang
,
IEEE Trans. Circuits Syst., I: Regul. Pap.
35
,
1257
1272
(
1988
).
28.
J.
Neumann
,
Theory of Self-Reproducing Automata
(
University of Illinois Press
,
Urbana, IL
,
1966
).
29.
Y. H.
Cho
and
W. H.
Mangione-Smith
,
ACM Trans. Embedded Comput. Syst.
7
,
21
1
21
26
(
2008
).
30.
D. B.
Strukov
,
Nanotechnology
2
,
9
12
(
2011
).
31.
G.
Liu
,
Y.
Wu
,
Y.-M.
Lin
,
D. B.
Farmer
,
J. A.
Ott
,
J.
Bruley
,
A.
Grill
,
P.
Avouris
,
D.
Pfeiffer
, and
A. A.
Balandin
,
ACS Nano
6
,
6786
6792
(
2012
).
32.
R.
Cheng
,
J.
Bai
,
L.
Liao
,
H.
Zhou
,
Y.
Chen
,
L.
Liu
,
Y.-C.
Lin
,
S.
Jiang
,
Y.
Huang
, and
X.
Duan
,
Proc. Natl. Acad. Sci. U.S.A.
109
,
11588
11592
(
2012
).
33.
R. S.
Mulliken
,
C. A.
Rieke
,
D.
Orlo
, and
H.
Orlo
,
J. Chem. Phys.
17
,
1248
1267
(
1949
).
34.
H.
Raza
and
E. C.
Kan
,
J. Comput. Electron.
7
,
372
375
(
2008
).
35.
D.
Kienle
,
J. I.
Cerda
, and
A. W.
Ghosh
,
J. Appl. Phys.
100
,
043714
043722
(
2006
).
36.
S.
Datta
,
Quantum Transport Atom to Transistor
(
Cambridge University Press
,
Cambridge
,
2005
).
37.
G.
Fiori
,
IEEE Electron Device Letters
32
,
1334
(
2011
).
38.
R.
Grassi
,
T.
Low
,
A.
Gnudi
, and
G.
Baccarani
,
IEEE Electron Device Letters
60
,
140
(
2013
).
You do not currently have access to this content.