We measure and simulate micromagnetically a framework based upon a nano-contact spin torque oscillator where two distinct localized evanescent spin-wave modes can be detected. The resulting frequency spectrum is composed by two peaks, corresponding to the excited modes, which lie below the ferromagnetic resonance frequency, and a low-frequency tail, which we attribute to the non-stationary switching between these modes. By using Fourier, wavelet, and Hilbert-Huang transforms, we investigate the properties of these modes in time and spatial domains, together with their spatial distribution. The existence of an additional localized mode (which was neither predicted by theory nor by previous numerical and experimental findings) has to be attributed to the large influence of the current-induced Oersted field strength which, in the present setup, is of the same order of magnitude as the external field. As a further consequence, the excited spin-waves, contrarily to what usually assumed, do not possess cylindrical symmetry: the Oersted field induces these modes to be excited at the two opposite sides of the region beneath the nano-contact.

1.
J. C.
Slonczewski
,
J. Magn. Magn. Mater.
159
,
L1
(
1996
).
2.
T.
Sebastian
 et al.,
Appl. Phys. Lett.
100
,
112402
(
2012
).
3.
F.
Macià
,
A. D.
Kent
, and
F. C.
Hoppensteadt
,
J. Appl. Phys.
109
,
07C733
(
2011
).
4.
J.
Turtle
,
K.
Beauvais
,
R.
Shaffer
,
A.
Palacios
,
V.
In
,
T.
Emery
, and
P.
Longhini
,
J. Appl. Phys.
113
,
114901
(
2013
).
5.
S. I.
Kiselev
 et al.,
Nature
425
,
380
(
2003
).
6.
Z.
Zeng
 et al.,
Sci. Rep.
3
,
1426
(
2013
).
7.
8.
D.
Houssameddine
 et al.,
Nat. Mater.
6
,
447
(
2007
).
9.
V. S.
Pribiag
 et al.,
Nat. Phys.
3
,
498
(
2007
).
10.
A. M.
Deac
 et al.,
Nat. Phys.
4
,
803
(
2008
).
11.
M.
Madami
 et al.,
Nat. Nanotechnol.
6
,
635
(
2011
).
12.
V. V.
Kruglyak
,
S. O.
Demokritov
, and
D.
Grundler
,
J. Phys. D: Appl. Phys.
43
,
264001
(
2010
).
13.
B.
Lenk
,
H.
Ulrichs
,
F.
Garbs
, and
M.
Münzenberg
,
Phys. Rep.
507
,
107
136
(
2011
).
14.
H.
Ulrichs
,
V. E.
Demidov
,
S. O.
Demokritov
, and
S.
Urazhdin
,
Appl. Phys. Lett.
100
,
162406
(
2012
).
15.
G.
Consolo
 et al.,
Phys. Rev. B
78
,
014420
(
2008
).
16.
S.
Bonetti
 et al.,
Phys. Rev. Lett.
105
,
217204
(
2010
).
17.
A.
Slavin
and
V.
Tiberkevich
,
Phys. Rev. Lett.
95
,
237201
(
2005
).
18.
G.
Consolo
 et al.,
Phys. Rev. B
76
,
144410
(
2007
).
19.
I.
Daubechies
, “
Ten lectures on wavelets
,” in CBMS-NSF Regional Conference Series in Applied Mathematics,
Philadelphia, SIAM
,
1992
.
20.
S.
Mallat
,
A Wavelet Tour of Signal Processing
(
Academic Press
,
San Diego
,
1998
).
21.
J. C.
Goswami
and
A. K.
Chan
,
Fundamentals of Wavelets. Theory, Algorithms and Applications
(
Wiley Interscience
,
2000
).
22.
G.
Finocchio
,
A.
Prattella
,
G.
Consolo
,
E.
Martinez
,
A.
Giordano
, and
B.
Azzerboni
,
J. Appl. Phys.
110
,
123913
(
2011
).
23.
N. E.
Huang
 et al.,
Proc. R. Soc. London, Ser. A
454
,
903
995
(
1998
).
24.
N. E.
Huang
,
Z.
Shen
, and
S.
Long
,
Annu. Rev. Fluid Mech.
31
,
417
457
(
1999
).
25.
G.
Consolo
,
G.
Finocchio
,
L.
Lopez-Diaz
, and
B.
Azzerboni
,
IEEE Trans. Magn.
45
,
5220
(
2009
).
26.
A.
Romeo
 et al.,
Physica B
403
,
464
(
2008
).
27.
G.
Consolo
,
L.
Lopez-Diaz
,
L.
Torres
, and
B.
Azzerboni
,
IEEE Trans. Magn.
43
,
2974
(
2007
).
28.
G.
Siracusano
,
G.
Finocchio
,
A.
La Corte
,
G.
Consolo
,
L.
Torres
, and
B.
Azzerboni
,
Phys. Rev. B
79
,
104438
(
2009
).
29.
A. N.
Slavin
and
P.
Kabos
,
IEEE Trans. Magn.
41
,
1264
(
2005
).
You do not currently have access to this content.