An in-depth characterization of the thermal reset transition in RRAM has been performed based on coupling self-consistent simulations to experimental results. A complete self-consistent simulator accounting for the electrical and thermal descriptions of the conductive filaments (CFs) has been developed for the numerical study of the temporal evolution of the reset transition in RRAM. The CFs series resistance, including the contributions of the setup and Maxwell components, has been included in the calculations. Using this simulation tool, we have been able to reproduce many experimental details of the experimental reset data obtained in Cu/HfO2/Pt devices. In doing so, we explained the current steps observed in some reset cycles by considering CFs with several coupled branches that break down at different times. The reset voltage dependence on the initial resistance of the CF has been analyzed and the relevant role played by the CF shape has also been demonstrated. In this respect, devices with a same initial resistance but different CF shape can switch at different voltages. A simulation study of the reset voltage distribution obtained for these devices has also been performed in order to explain the variability of the experimental samples.

1.
D.
Ielmini
, “
Reliability issues and modeling of flash and post-flash memory
,”
Microelectron. Eng.
86
,
1870
1875
(
2009
).
2.
The International Technology Roadmap for Semiconductors, 2011 and 2012; http://public.itrs.net.
3.
S.
Long
,
C.
Cagli
,
D.
Ielmini
,
M.
Liu
, and
J.
Suñé
, “
Analysis and modeling of resistive switching statistics
,”
J. Appl. Phys.
111
,
074508
(
2012
).
4.
H. S. P.
Wong
,
H. Y.
Lee
,
S.
Yu
,
Y.-S.
Chen
,
Y.
Wu
,
P.-S.
Chen
,
B.
Lee
,
F. T.
Chen
, and
M.-J.
Tsai
, “
Metal-oxide RRAM
,”
Proc. IEEE
100
(
6
),
1951
1970
(
2012
).
5.
I. G.
Baek
,
D. C.
Kim
,
M. J.
Lee
,
H.-J.
Kim
,
E. K.
Yim
,
M. S.
Lee
,
J. E.
Lee
,
S. E.
Ahn
,
S.
Seo
,
J. H.
Lee
,
J. C.
Park
,
Y. K.
Cha
,
S. O.
Park
,
H. S.
Kim
,
I. K.
Yoo
,
U-In
Chung
,
J. T.
Moon
, and
B. I.
Ryu
, “
Multi-layer cross-point binary oxide resistive memory (OxRRAM) for post-NAND storage application
,”
IEDM Tech. Dig.
2005
,
750
753
.
6.
Shyh-Shyuan
Sheu
,
Kuo-Hsing
Cheng
,
Meng-Fan
Chang
,
Pei-Chia
Chiang
,
Wen-Pin
Lin
,
Heng-Yuan
Lee
,
Pang-Shiu
Chen
,
Yu-Sheng
Chen
,
Tai-Yuan
Wu
,
F. T.
Chen
,
Keng-Li
Su
,
Ming-Jer
Kao
, and
Ming-Jinn
Tsai
, “
Fast-write resistive RAM (RRAM) for embedded applications
,”
IEEE, Des. & Test Comput.
28
(
1
),
64
71
(
2011
).
7.
U.
Russo
,
C.
Cagli
, and
A.-L.
Lacaita
, “
Self-accelerated thermal dissolution model for reset programming in unipolar resistive-switching memory (RRAM) devices
,”
Trans. Electron Devices
56
(
2
),
193
200
(
2009
).
8.
U.
Russo
,
C.
Cagli
, and
A.-L.
Lacaita
, “
Filament conduction and reset mechanism in NiO-based resistive-switching memory (RRAM) devices
,”
Trans. Electron Devices
56
(
2
),
186
192
(
2009
).
9.
B.
Gao
,
J. F.
Kang
,
Y. S.
Chen
,
F. F.
Zhang
,
B.
Chen
,
P.
Huang
,
L. F.
Liu
,
X. Y.
Liu
,
Y. Y.
Wang
,
X. A.
Tran
,
Z. R.
Wang
,
H. Y.
Yu
, and
A.
Chin
,“
Oxide-based RRAM: Unified microscopic principle for both unipolar and bipolar switching
,”
IEDM Tech. Dig.
2011
,
17
4
1
4
.
10.
M.
Bocquet
,
D.
Deleruyelle
,
C.
Muller
, and
J.-M.
Portal
, “
Self-consistent physical modeling of set/reset operations in unipolar resistive-switching memories
,”
Appl. Phys. Lett.
98
,
263507
(
2011
).
11.
D.
Ielmini
,
F.
Nardi
, and
C.
Cagli
, “
Physical models of size-dependent nanofilament formation and rupture in NiO resistive switching memories
,”
Nanotechnology
22
,
254022
(
2011
).
12.
C.
Zhong
,
W.
Tzeng
,
K.
Liu
,
H.
Lin
,
K.
Chang
,
Y.
Chan
,
C.
Kuo
,
P.
Chen
,
H.
Lee
,
F.
Chen
, and
M.
Tsai
, “
Effect of ITO electrode with different oxygen contents on the electrical characteristics of HfOx RRAM devices
,”
Surf. Coat. Technol.
231
,
563
566
(
2012
).
13.
J. S.
Lee
,
S. B.
Lee
,
S. H.
Chang
,
L. G.
Gao
,
B. S.
Kang
,
M. J.
Lee
,
C. J.
Kim
,
T. W.
Noh
, and
B.
Kahng
, “
Scaling theory for unipolar resistance switching
,”
Phys. Rev. Lett.
105
,
205701
(
2010
).
14.
L. M.
Yang
,
Y. L.
Song
,
Y.
Liu
,
Y. L.
Wang
,
X. P.
Tian
,
M.
Wang
,
Y. Y.
Lin
,
R.
Huang
,
Q. T.
Zou
, and
J. G.
Wu
, “
Linear scaling of reset current down to 22-nm node for a novel CuxSiyO RRAM
,”
IEEE Electron Device Lett.
33
,
89
(
2012
).
15.
S. B.
Lee
,
S. C.
Chae
,
S. H.
Chang
,
L. S.
Lee
,
S.
Seo
,
B.
Kahng
, and
T. W.
Noh
, “
Scaling behaviors of reset voltages and currents in unipolar resistance switching
,”
Appl. Phys. Lett.
93
,
212105
(
2008
).
16.
S. C.
Chae
,
J. S.
Lee
,
S.
Kim
,
S. B.
Lee
,
S. H.
Chang
,
C.
Liu
,
B.
Kahng
,
H.
Shin
,
D.-W.
Kim
,
C. U.
Jung
,
S.
Seo
,
M.-J.
Lee
, and
T. W.
Noh
, “
Random circuit breaker network model for unipolar resistance switching
,”
Adv. Mater.
20
,
1154
(
2008
).
17.
X.
Yang
,
S.
Long
,
K.
Zhang
,
X.
Liu
,
X.
Lian
,
Q.
Liu
,
H.
Lv
,
M.
Wang
,
H.
Xie
,
H.
Sun
,
P.
Sun
,
J.
Suñé
, and
M.
Liu
, “
Investigation on the RESET switching mechanism of bipolar Cu/HfO2/Pt RRAM devices with a statistical methodology
,”
J. Phys. D: Appl. Phys.
46
,
245107
(
2013
).
18.
R. S.
Timsit
,
IEEE Trans. Compon. Packag. Technol.
22
(
1
),
85
98
(
1999
).
19.
F.
Nardi
,
S.
Balatti
,
S.
Larentis
,
D. C.
Gilmer
, and
D.
Ielmini
, “
Complementary switching in oxide-based bipolar resistive-switching random memory
,”
IEEE Trans. Electron Devices
60
,
70
(
2013
).
20.
K. M.
Kim
and
C. S.
Hwang
, “
The conical shape filament growth model in unipolar resistance switching of TiO2 thin film
,”
Appl. Phys. Lett.
94
,
122109
(
2009
).
21.
J.
Moran
,
H. N.
Shapiro
,
B. R.
Munson
, and
D. P.
DeWitt
,
Introduction to Thermal Systems Engineering: Thermodynamics, Fluid Mechanics, and Heat Transfer
(
John Wiley & Sons, Inc.
2003
).
You do not currently have access to this content.