We have investigated the potential of solution-processed β-phase iron disilicide (FeSi2) nanoparticles as a novel semiconducting material for photovoltaic applications. Combined ultraviolet-visible absorption and photothermal deflection spectroscopy measurements have revealed a direct band gap of 0.85 eV and, therefore, a particularly high absorption in the near infrared. With the help of Fourier-transform infrared and X-ray photoelectron spectroscopy, we have observed that exposure to air primarily leads to the formation of a silicon oxide rather than iron oxide. Mössbauer measurements have confirmed that the nanoparticles possess a phase purity of more than 99%. To diminish the small fraction of metallic iron impurities, which were detected by superconducting quantum interference device magnetometry and which would act as unwanted Auger recombination centers, we present a novel concept to magnetically separate the FeSi2 nanoparticles (NPs). This process leads to a reduction of more than 95% of the iron impurities.

1.
T.
Unold
and
H. W.
Schock
, “
Nonconventional (non-silicon-based) photovoltaic materials
,”
Annu. Rev. Mater. Res.
41
,
297
321
(
2011
).
2.
J.
Jasieniak
,
B. I.
MacDonald
,
S. E.
Watkins
, and
P.
Mulvaney
, “
Solution-processed sintered nanocrystal solar cells via layer-by-layer assembly
,”
Nano Lett.
11
,
2856
2864
(
2011
).
3.
M. G.
Panthani
,
V.
Akhavan
,
B.
Goodfellow
,
J. P.
Schmidtke
,
L.
Dunn
,
A.
Dodabalapur
,
P. F.
Barbara
, and
B. A.
Korgel
, “
Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) nanocrystal “inks” for printable photovoltaics
,”
J. Am. Chem. Soc.
130
,
16770
16777
(
2008
).
4.
J. M.
Luther
,
J.
Gao
,
M. T.
Lloyd
,
O. E.
Semonin
,
M. C.
Beard
, and
A. J.
Nozik
, “
Stability assessment on a 3% bilayer PbS/ZnO quantum dot heterojunction solar cell
,”
Adv. Mater.
22
,
3704
3707
(
2010
).
5.
S. P.
Murarka
, “
Transition metal silicides
,”
Annu. Rev. Mater. Sci.
13
,
117
137
(
1983
).
6.
L.
Chen
, “
Metal silicides: An integral part of microelectronics
,”
JOM
57
,
24
30
(
2005
).
7.
G. K.
Dalapati
,
S. L.
Liew
,
A. S. W.
Wong
,
Y.
Chai
,
S. Y.
Chiam
, and
D. Z.
Chi
, “
Photovoltaic characteristics of p-β-FeSi2(Al)/n-Si(100) heterojunction solar cells and the effects of interfacial engineering
,”
Appl. Phys. Lett.
98
,
013507
(
2011
).
8.
S.
Terasawa
,
T.
Inoue
, and
M.
Ihara
, “
Fabrication of β-FeSi2/Si composite films for photovoltaic applications by using scanning annealing
,”
Sol. Energy Mater. Sol. Cells
93
,
215
221
(
2009
).
9.
Q.
Guo
,
H. W.
Hillhouse
, and
R.
Agrawal
, “
Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells
,”
J. Am. Chem. Soc.
131
,
11672
11673
(
2009
).
10.
F. C.
Krebs
, “
Fabrication and processing of polymer solar cells: A review of printing and coating techniques
,”
Sol. Energy Mater. Sol. Cells
93
,
394
412
(
2009
).
11.
P.
Reiss
,
E.
Couderc
,
J.
de Girolamo
, and
A.
Pron
, “
Conjugated polymers/semiconductor nanocrystals hybrid materials-preparation, electrical transport properties and applications
,”
Nanoscale
3
,
446
489
(
2011
).
12.
J.
Weickert
,
R. B.
Dunbar
,
H. C.
Hesse
,
W.
Wiedemann
, and
L.
Schmidt-Mende
, “
Nanostructured organic and hybrid solar cells
,”
Adv. Mater.
23
,
1810
1828
(
2011
).
13.
A. K.
Rath
,
M.
Bernechea
,
L.
Martinez
,
F. P. G.
de Arquer
,
J.
Osmond
, and
G.
Kostantatos
, “
Solution-processed inorganic bulk nano-heterojunctions and their application to solar cells
,”
Nature Photon.
6
,
529
534
(
2012
).
14.
H. A.
Atwater
and
A.
Polman
, “
Plasmonics for improved photovoltaic devices
,”
Nature Mater.
9
,
205
2013
(
2010
).
15.
J.-L.
Wu
,
F.-C.
Chen
,
Y.-S.
Hsiao
,
F.-C.
Chien
,
P.
Chen
,
C.-H.
Kuo
,
M. H.
Huang
, and
C.-S.
Hsu
, “
Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells
,”
ACS Nano
5
,
959
967
(
2011
).
16.
N.
Radychev
,
I.
Lokteva
,
F.
Witt
,
J.
Kolny-Olesiak
,
H.
Borchert
, and
J.
Parisi
, “
Physical origin of the impact of different nanocrystal surface modifications on the performance of CdSe/P3HT hybrid solar cells
,”
J. Phys. Chem. C
115
,
14111
14122
(
2011
).
17.
B. R.
Saunders
and
M. L.
Turner
, “
Nanoparticle-polymer photovoltaic cells
,”
Adv. Colloid Interface Sci.
138
,
1
23
(
2008
).
18.
M.
Afzaal
and
P.
O'Brien
, “
Recent developments in II–VI and III–VI semiconductors and their applications in solar cells
,”
J. Mater. Chem.
16
,
1597
1602
(
2006
).
19.
R. N.
Pereira
,
S.
Niesar
,
W. B.
You
,
A. F.
da Cunha
,
N.
Erhard
,
A. R.
Stegner
,
H.
Wiggers
,
M.-G.
Willinger
,
M.
Stutzmann
, and
M. S.
Brandt
, “
Solution-processed networks of silicon nanocrystals: The role of internanocrystal medium on semiconducting behavior
,”
J. Phys. Chem. C
115
,
20120
20127
(
2011
).
20.
H.
Lange
, “
Electronic properties of semiconducting silicides
,”
Phys. Status Solidi B
201
,
3
65
(
1997
).
21.
R.
Bywalez
,
H.
Orthner
,
E.
Mehmedovic
,
R.
Imlau
,
A.
Kovacs
,
M.
Luysberg
, and
H.
Wiggers
, “
Direct gas-phase synthesis of single-phase β-FeSi2 nanoparticles
,”
J. Nanopart. Res.
15
,
1878
(
2013
).
22.
O.
Ambacher
,
W.
Rieger
,
P.
Ansmann
,
H.
Angerer
,
T. D.
Moustakas
, and
M.
Stutzmann
, “
Sub-bandgap absorption of gallium nitride determined by photothermal deflection spectroscopy
,”
Solid State Commun.
97
,
365
370
(
1996
).
23.
J.
Knipping
,
H.
Wiggers
,
B.
Rellinghaus
,
P.
Roth
,
D.
Konjhodzic
, and
C.
Meier
, “
Synthesis of high purity silicon nanoparticles in a low pressure microwave reactor
,”
J. Nanosci. Nanotechnol.
4
,
1039
1044
(
2004
).
24.
S.
Niesar
,
R.
Dietmueller
,
H.
Nesswetter
,
H.
Wiggers
, and
M.
Stutzmann
, “
Silicon/organic semiconductor heterojunctions for solar cells
,”
Phys. Status Solidi A
206
,
2775
2781
(
2009
).
25.
C.-Y.
Liu
,
Z. C.
Holman
, and
U. R.
Kortshagen
, “
Hybrid solar cells from P3HT and silicon nanocrystals
,”
Nano Lett.
9
,
449
452
(
2009
).
26.
C.
Meier
,
A.
Gondorf
,
S.
Lüttjohann
,
A.
Lorke
, and
H.
Wiggers
, “
Silicon nanoparticles: Absorption, emission, and the nature of the electronic bandgap
,”
J. Appl. Phys.
101
,
103112
(
2007
).
27.
C. B.
Roxlo
,
B.
Abeles
,
C. R.
Wronski
,
G. D.
Cody
, and
T.
Tiedje
, “
Comment on the optical absorption edge in a-Si:H
,”
Solid State Commun.
47
,
985
987
(
1983
).
28.
I.
Stenger
,
L.
Siozade
,
B.
Gallas
,
S.
Fisson
,
G.
Vuye
, and
J.
Rivory
, “
Near infrared absorption of Si nanoparticles embedded in silica films
,”
Surf. Sci.
601
,
2912
2916
(
2007
).
29.
M.
Vaněček
,
A.
Abrahám
,
O.
Štika
,
J.
Stuchlík
, and
J.
Kočka
, “
Gap states density in a-Si:H deduced from subgap optical absorption measurement on Schottky solar cells
,”
Phys. Status Solidi A
83
,
617
623
(
1984
).
30.
R.
Lang
,
L.
Amaral
, and
E. A.
Meneses
, “
Indirect optical absorption and origin of the emission from β-FeSi2 nanoparticles: Bound exciton (0.809 eV) and band to acceptor impurity (0.795 eV) transitions
,”
J. Appl. Phys.
107
,
103508
(
2010
).
31.
J.
Tauc
,
R.
Grigorovici
, and
A.
Vancu
, “
Optical properties and electronic structure of amorphous germanium
,”
Phys. Status Solidi B
15
,
627
637
(
1966
).
32.
C. A.
Dimitriadis
,
J. H.
Werner
,
S.
Logothetidis
,
M.
Stutzmann
,
J.
Weber
, and
R.
Nesper
, “
Electronic properties of semiconducting FeSi2 films
,”
J. Appl. Phys.
68
,
1726
1734
(
1990
).
33.
D.
Gong
,
D.
Li
,
Z.
Yuan
,
M.
Wang
, and
D.
Yang
, “
Optical properties of single-phase β-FeSi2 films fabricated by electron beam evaporation
,”
Appl. Surf. Sci.
254
,
4875
4878
(
2008
).
34.
M. C.
Bost
and
J. E.
Mahan
, “
A clarification of the index of refraction of beta-iron disilicide
,”
J. Appl. Phys.
64
,
2034
2037
(
1988
).
35.
C.
Giannini
,
S.
Lagomarsino
,
F.
Scarinci
, and
P.
Castrucci
, “
Nature of the band gap of polycrystalline β-FeSi2 films
,”
Phys. Rev. B
45
,
8822
8824
(
1992
).
36.
L.
Martinelli
,
E.
Grilli
,
D. B.
Migas
,
L.
Miglio
,
F.
Marabelli
,
C.
Soci
,
M.
Geddo
,
M. G.
Grimaldi
, and
C.
Spinella
, “
Luminescence from β-FeSi2 precipitates in Si. II: Origin and nature of the photoluminescence
,”
Phys. Rev. B
66
,
085320
(
2002
).
37.
D.
Scarano
,
A.
Zecchina
,
S.
Bordiga
,
F.
Geobaldo
,
G.
Spoto
,
G.
Petrini
,
G.
Leofanti
,
M.
Padovan
, and
G.
Tozzola
, “
Fourier-transform infrared and Raman spectra of pure and Al-, B-, Ti- and Fe-substituted silicalites: stretching-mode region
,”
J. Chem. Soc., Faraday Trans.
89
,
4123
4130
(
1993
).
38.
S.
Niesar
,
R. N.
Pereira
,
A. R.
Stegner
,
N.
Erhard
,
M.
Hoeb
,
A.
Baumer
,
H.
Wiggers
,
M. S.
Brandt
, and
M.
Stutzmann
, “
Low-cost post-growth treatments of crystalline silicon nanoparticles improving surface and electronic properties
,”
Adv. Funct. Mater.
22
,
1190
1198
(
2012
).
39.
F.
Esaka
,
H.
Yamamoto
,
H.
Udono
,
N.
Matsubayashi
,
K.
Yamaguchi
,
S.
Shamoto
,
M.
Magara
, and
T.
Kimura
, “
Spectroscopic characterization of β-FeSi2 single crystals and homoepitaxial β-FeSi2 films by XPS and XAS
,”
Appl. Surf. Sci.
257
,
2950
2954
(
2011
).
40.
V.
Kinsinger
,
I.
Dezsi
,
P.
Steiner
, and
G.
Langouche
, “
XPS investigations of FeSi, FeSi2 and Fe implanted in Si and Ge
,”
J. Phys.: Condens. Matter
2
,
4955
(
1990
).
41.
S. P.
Chenakin
,
G. G.
Galstyan
,
A. B.
Tolstogouzov
, and
N.
Kruse
, “
XPS and ToF-SIMS characterization of a finemet surface: effect of heating
,”
Surf. Interface Anal.
41
,
231
237
(
2009
).
42.
M.
Rebien
,
W.
Henrion
,
H.
Angermann
, and
A.
Röseler
, “
Ellipsometric comparison of the native oxides of silicon and semiconducting iron disilicide (β-FeSi2)
,”
Surf. Sci.
462
,
143
150
(
2000
).
43.
M.
Li
,
X.
Chen
,
J.
Guan
,
X.
Wang
,
J.
Wang
,
C. T.
Williams
, and
C.
Liang
, “
A facile and novel approach to magnetic FeSiO2 and FeSi2SiO2 nanoparticles
,”
J. Mater. Chem.
22
,
609
616
(
2012
).
44.
A. A.
Istratov
,
T.
Buonassisi
,
M. D.
Pickett
,
M.
Heuer
, and
E. R.
Weber
, “
Control of metal impurities in “dirty” multicrystalline silicon for solar cells
,”
Mater. Sci. Eng., B
134
,
282
286
(
2006
).
45.
L. R.
Walker
,
G. K.
Wertheim
, and
V.
Jaccarino
, “
Interpretation of the Fe57 isomer shift
,”
Phys. Rev. Lett.
6
,
98
101
(
1961
).
46.
H. H.
Hamdeh
,
M. M.
Eltabey
,
J. C.
Ho
,
P. C.
Lee
,
K.
Chen
, and
Y. Y.
Chen
, “
Magnetism in nanoparticles of semiconducting FeSi2
,”
J. Magn. Magn. Mater.
322
,
2227
2230
(
2010
).
47.
K.
Irmscher
,
W.
Gehlhoff
,
Y.
Tomm
,
H.
Lange
, and
V.
Alex
, “
Iron group impurities in β-FeSi2 studied by EPR
,”
Phys. Rev. B
55
,
4417
4425
(
1997
).
48.
Y.
Dusausoy
,
J.
Protas
,
R.
Wandji
, and
B.
Roques
, “
Structure cristalline du disiliciure de fer, β-FeSi2
,”
Acta Crystallogr. Sect. B
27
,
1209
1218
(
1971
).
49.
M.
Fanciulli
,
C.
Rosenblad
,
G.
Weyer
,
H.
von Känel
,
N.
Onda
,
V.
Nevolin
, and
A.
Zenkevich
, “
Phase transformations in layered Fe-Si structures
,”
Mater. Res. Symp. Proc.
402
,
319
(
1995
).
50.
E.
Arushanov
,
M.
Respaud
,
J. M.
Broto
,
C.
Kloc
,
J.
Leotin
, and
E.
Bucher
, “
Magnetic properties of β-FeSi2 single crystals
,”
Phys. Rev. B
53
,
5108
5111
(
1996
).
51.
P.
Lengsfeld
,
S.
Brehme
,
G.
Ehlers
,
H.
Lange
,
N.
Stüsser
,
Y.
Tomm
, and
W.
Fuhs
, “
Anomalous hall effect in β-FeSi2
,”
Phys. Rev. B
58
,
16154
16159
(
1998
).
52.
K.
Szymański
,
J.
Baas
,
L.
Dobrzyński
, and
D.
Satuła
, “
Magnetic and Mössbauer investigation of FeSi2xAlx
,”
Physica B
225
,
111
120
(
1996
).
53.
I. M. L.
Billas
,
J. A.
Becker
,
A.
Châtelain
, and
W. A.
de Heer
, “
Magnetic moments of iron clusters with 25 to 700 atoms and their dependence on temperature
,”
Phys. Rev. Lett.
71
,
4067
4070
(
1993
).
54.
Y. Y.
Chen
,
P. C.
Lee
,
C. B.
Tsai
,
S.
Neeleshwar
,
C. R.
Wang
,
J. C.
Ho
, and
H. H.
Hamdeh
, “
Chemical disorder-induced magnetism in FeSi2 nanoparticles
,”
Appl. Phys. Lett.
91
,
251907
(
2007
).
55.
M.
Opel
,
K.-W.
Nielsen
,
S.
Bauer
,
S. T. B.
Goennenwein
,
J. C.
Cezar
,
D.
Schmeisser
,
J.
Simon
,
W.
Mader
, and
R.
Gross
, “
Nanosized superparamagnetic precipitates in cobalt-doped ZnO
,”
Eur. Phys. J. B
63
,
437
444
(
2008
).
56.
B.
Martínez
,
X.
Obradors
,
L.
Balcells
,
A.
Rouanet
, and
C.
Monty
, “
Low temperature surface spin-glass transition in γ-Fe2O3 nanoparticles
,”
Phys. Rev. Lett.
80
,
181
184
(
1998
).
You do not currently have access to this content.