Magnetic composite nanomaterials consisting of more than two functional constituents have been attracting much research interests due to the realization of multiple functionalities in a single entity. In particular, integration of ferromagnetic oxides and noble metal nanoparticles (NPs) in composites results in simultaneous magnetic activity and optical response where the optical property of the whole system could be modulated by application of an external magnetic field. In this work, we prepared Ag NPs-coated Fe3O4 microspheres as a novel surfactant-free surface-enhanced Raman scattering (SERS) substrate through a solid-phase thermal decomposition reaction. The SERS sensitivity of the fabricated nanocomposites is maximized by adjusting the size and density of Ag NPs supported on the Fe3O4 microspheres and further increased by magnetic-field-directed self-assembly of the composite substrates, with both effects attributed to the efficient generation of plasmonic near-field “hot” spots. At the optimal conditions, the prepared substrate is capable of detecting rhodamine 6G molecules at a concentration down to 10−12 M, thus demonstrating the great potential of using bifunctional nanocomposites as an excellent candidate for ultra-high sensitive Raman spectroscopy and biosensors. We also reveal the underlying mechanisms responsible for the observed SERS enhancements through full-wave numerical simulations.

1.
B. S.
Kim
,
J. M.
Qiu
,
J. P.
Wang
, and
T. A.
Taton
,
Nano Lett.
5
,
1987
1991
(
2005
).
2.
G.
Wang
,
Z.
Gao
,
S.
Tang
,
C.
Chen
,
F.
Duan
,
S.
Zhao
,
S.
Lin
,
Y.
Feng
,
L.
Zhou
, and
Y.
Qin
,
ACS Nano
6
,
11009
11017
(
2012
).
3.
J.
Kim
,
S.
Park
,
J. E.
Lee
,
S. M.
Jin
,
J. H.
Lee
,
I. S.
Lee
,
I.
Yang
,
J. S.
Kim
,
S. K.
Kim
,
M. H.
Cho
, and
T.
Hyeon
,
Angew. Chem., Int. Ed.
45
,
7754
7758
(
2006
).
4.
M.
Hu
,
A. A.
Belik
,
M.
Imura
, and
Y.
Yamauchi
,
J. Am. Chem. Soc.
135
,
384
391
(
2013
).
5.
C.
Xu
and
S.
Sun
,
Adv. Drug Delivery Rev.
65
,
732
743
(
2013
).
6.
B.
Santara
,
B.
Pal
, and
P. K.
Giri
,
J. Appl. Phys.
110
,
114322
(
2011
).
7.
G. L.
Liu
,
Y.
Lu
,
J.
Kim
,
J. C.
Doll
, and
L. P.
Lee
,
Adv. Mater.
17
,
2683
2688
(
2005
).
8.
Z.
Xu
,
Y.
Hou
, and
S.
Sun
,
J. Am. Chem. Soc.
129
,
8698
8699
(
2007
).
9.
M. Y.
Sha
,
H. X.
Xu
,
M. J.
Natan
, and
R.
Cromer
,
J. Am. Chem. Soc.
130
(
51
),
17214
17215
(
2008
).
10.
S. J.
Guo
,
S. J.
Dong
, and
E.
Wang
,
Chem. Eur. J.
15
,
2416
2424
(
2009
).
11.
B. L.
Lv
,
Y.
Xu
,
H.
Tian
,
D.
Wu
, and
Y. H.
Sun
,
J. Solid State Chem.
183
,
2968
2973
(
2010
).
12.
F. H.
Lin
,
W.
Chen
,
Y. H.
Liao
,
R. A.
Doong
, and
Y. D.
Li
,
Nano Res.
4
,
1223
1232
(
2011
).
13.
J. K.
Lim
and
S. A.
Majetich
,
Nano Today
8
,
98
113
(
2013
).
14.
L.
Zhang
,
W. F.
Dong
,
Z. Y.
Tang
,
J. F.
Song
,
H.
Xia
, and
H. B.
Sun
,
Opt. Lett.
35
,
3297
3299
(
2010
).
15.
H. B.
Hu
,
Z. H.
Wang
,
L.
Pan
,
S.
Zhao
, and
S.
Zhu
,
J. Phys. Chem. C
114
,
7738
7742
(
2010
).
16.
K.
Kim
,
J. Y.
Choi
,
H. B.
Lee
, and
K. S.
Shin
,
ACS Appl. Mater. Interfaces
2
,
1872
1878
(
2010
).
17.
Y.
Lee
,
M. A.
Garcia
,
N. A.
Frey Huls
, and
S.
Sun
,
Angew. Chem., Int. Ed.
49
,
1271
1274
(
2010
).
18.
X.
Sun
,
S.
Guo
,
C.-S.
Chung
,
W.
Zhu
, and
S.
Sun
,
Adv. Mater.
25
,
132
136
(
2013
).
19.
M.
Moskovits
,
Rev. Mod. Phys.
57
,
783
826
(
1985
).
20.
S. M.
Nie
and
S. R.
Emory
,
Science
275
,
1102
1106
(
1997
).
21.
H. X.
Xu
,
E. J.
Bjerneld
,
M.
Käll
, and
L.
Börjesson
,
Phys. Rev. Lett.
83
,
4357
4360
(
1999
).
22.
G. W.
Lu
,
C.
Li
, and
G. Q.
Shi
,
Chem. Mater.
19
,
3433
3440
(
2007
).
23.
K.
Kneipp
,
H.
Kneipp
,
I.
Itzkan
,
R. R.
Dasari
, and
M. S.
Feld
,
Chem. Rev.
99
,
2957
2976
(
1999
).
24.
A. M.
Schwartzberg
,
C. D.
Grant
,
A.
Wolcott
,
C.
Talley
,
C. T.
Huser
,
R.
Bogomolni
, and
J. Z.
Zhang
,
J. Phys. Chem. B
108
,
19191
19197
(
2004
).
25.
E.
Messina
,
E.
Cavallaro
,
A.
Cacciola
,
M. A.
Latì
,
P. G.
Gucciardi
,
F.
Borghese
,
P.
Denti
,
R.
Saija
,
G.
Compagnini
,
M.
Meneghetti
,
V.
Amendola
, and
O. M.
Maragò
,
ACS Nano
5
,
905
913
(
2011
).
26.
R.
Jin
,
Y. W.
Cao
,
C. A.
Mirkin
,
K. L.
Kelly
,
G. C.
Schatz
, and
J. G.
Zheng
,
Science
294
,
1901
1903
(
2001
).
27.
A.
Pyatenko
,
M.
Yamaguchi
, and
M.
Suzuki
,
J. Phys. Chem. C
111
,
7910
7917
(
2007
).
28.
M.
Spuch-Calvar
,
L.
Rodríguez
,
P.
Morales
,
R. A.
Puebla
, and
L.
Marzan
,
J. Phys. Chem. C
113
,
3373
3377
(
2009
).
29.
D. A.
Wheeler
,
S. A.
Adams
,
T. L.
Luke
,
A. T.
Castro
, and
J. Z.
Zhang
,
Ann. Phys.
524
,
670
679
(
2012
).
30.
H.
Deng
,
X. L.
Li
,
Q.
Peng
,
X.
Wang
,
J. P.
Chen
, and
Y. D.
Li
,
Angew. Chem., Int. Ed.
44
,
2782
2785
(
2005
).
31.
L. B.
Yang
,
Z. Y.
Bao
,
Y. C.
Wu
, and
J. H.
Liu
,
J. Raman Spectrosc.
43
,
848
856
(
2012
).
32.
See supplementary material at http://dx.doi.org/10.1063/1.4823732 for the detailed determination of the diameter and gap distance of Ag nanoparticles and for the Raman intensity comparison between the control sample and the composite nanostructure.
33.
Q.
An
,
P.
Zhang
,
J. M.
Li
,
W. F.
Ma
,
J.
Guo
,
J.
Hu
, and
C. C.
Wang
,
Nanoscale
4
,
5210
5216
(
2012
).
34.
H. J.
Chen
,
L.
Shao
,
Q.
Li
, and
J. F.
Wang
,
Chem. Soc. Rev.
42
,
2679
2724
(
2013
).
35.
K.
Kim
,
H. J.
Jang
, and
K. S.
Shin
,
Analyst
134
,
308
313
(
2009
).
36.
C. F.
Bohren
and
D. R.
Huffman
,
Absorption and Scattering of Light by Small Particles
(
Wiley
,
New York
,
1998
).
37.
N. J.
Halas
,
S.
Lal
,
W. S.
Chang
,
S.
Link
, and
P.
Nordlander
,
Chem. Rev.
111
,
3913
3961
(
2011
).
38.
Y.
Sun
,
Y.
Tian
,
M.
He
,
Q.
Zhao
,
C.
Chen
,
C.
Hu
, and
Y.
Liu
,
J. Electron. Mater.
41
,
519
523
(
2012
).
39.
Y.
Chi
,
Q.
Yuan
,
Y. J.
Li
,
J. C.
Tu
,
L.
Zhao
,
N.
Li
, and
X. T.
Li
,
J. Colloid Interface Sci.
383
,
96
102
(
2012
).
40.
S. W.
da Silva
,
T. F. O.
Melo
,
M. A. G.
Soler
,
E. C. D.
Lima
,
M. F.
da Silva
, and
P. C.
Morais
,
IEEE Trans. Magn.
39
,
2645
2647
(
2003
).
41.
D. L. A.
de Faria
,
S. V.
Silva
, and
M. T.
de Oliveira
,
J. Raman Spectrosc.
28
,
873
878
(
1997
).
42.
Z. Q.
Tian
,
B.
Ren
, and
D. Y.
Wu
,
J. Phys. Chem. B
106
,
9463
9483
(
2002
).
43.
M.
Zamuner
,
D.
Talaga
,
F.
Deiss
,
V.
Guieu
,
A.
Kuhn
,
P.
Ugo
, and
N.
Sojic
,
Adv. Funct. Mater.
19
,
3129
3135
(
2009
).
44.
P. G.
Etchegoin
,
M.
Meyer
,
E.
Blackie
, and
E. C.
Le Ru
,
Anal. Chem.
79
,
8411
8415
(
2007
).
45.
X.
Li
,
Y.
Zhang
,
Z. X.
Shen
, and
H. J.
Fan
,
Small
8
,
2548
2554
(
2012
).
46.
Y.
Yang
,
Z. Y.
Li
,
K.
Yamaguchi
,
M.
Tanemura
,
Z. R.
Huang
,
D. L.
Jiang
,
Y. H.
Chen
,
F.
Zhou
, and
M.
Nogami
,
Nanoscale
4
,
2663
2669
(
2012
).
47.
E. C.
Le Ru
,
E.
Blackie
,
M.
Meyer
, and
P. G.
Etchegoin
,
J. Phys. Chem. C
111
,
13794
13803
(
2007
).
48.
B. H.
Jun
,
G.
Kim
,
J.
Baek
,
H.
Kang
,
T.
Kim
,
T.
Hyeon
,
D. H.
Jeong
, and
Y. S.
Lee
,
Phys. Chem. Chem. Phys.
13
,
7298
7303
(
2011
).
49.
T.
You
,
P.
Yin
,
L.
Jiang
,
X.
Lang
,
L.
Guo
, and
S.
Yang
,
Phys. Chem. Chem. Phys.
14
,
6817
6825
(
2012
).
50.
D. Y.
Lei
,
A.
Aubry
,
S. A.
Maier
, and
J. B.
Pendry
,
New J. Phys.
12
,
093030
(
2010
).
51.
A.
Aubry
,
D. Y.
Lei
,
S. A.
Maier
, and
J. B.
Pendry
,
Phys. Rev. Lett.
105
,
233901
(
2010
).
52.
D. Y.
Lei
,
A.
Aubry
,
S. A.
Maier
, and
J. B.
Pendry
,
ACS Nano
5
,
597
607
(
2011
).
53.
D. M.
Sullivan
,
Electromagnetic Simulation Using the FDTD Method
(
IEEE Press
,
Piscataway
,
2000
).

Supplementary Material

You do not currently have access to this content.