Spectral filtering and electromagnetically induced transparency (EIT) with hybrid silicon-plasmonic traveling-wave resonators are theoretically investigated. The rigorous three-dimensional vector finite element method simulations are complemented with temporal coupled mode theory. We show that ring and disk resonators with sub-micron radii can efficiently filter the lightwave with minimal insertion loss and high quality factors (Q). It is shown that disk resonators feature reduced radiation losses and are thus advantageous. They exhibit unloaded quality factors as high as 1000 in the telecom spectral range, resulting in all-pass filtering components with sharp resonances. By cascading two slightly detuned resonators and providing an additional route for resonator interaction (i.e., a second bus waveguide), a response reminiscent of EIT is observed. The EIT transmission peak can be shaped by means of resonator detuning and interelement separation. Importantly, the respective Q can become higher than that of the single-resonator structure. Thus, the possibility of exploiting this peak in switching applications relying on the thermo-optic effect is, finally, assessed.

1.
M. Z.
Alam
,
J.
Meier
,
J. S.
Aitchison
, and
M.
Mojahedi
, in
CLEO/QELS
, paper JThD112 (
2007
).
2.
R. F.
Oulton
,
V. J.
Sorger
,
D. A.
Genov
,
D. F. P.
Pile
, and
X.
Zhang
,
Nat. Photonics
2
,
496
(
2008
).
3.
R.
Salvador
,
A.
Martinez
,
C.
Garcia-Meca
,
R.
Ortuno
, and
J.
Marti
,
IEEE J. Sel. Top. Quantum Electron.
14
,
1496
(
2008
).
4.
X.-Y.
Zhang
,
A.
Hu
,
J. Z.
Wen
,
T.
Zhang
,
X.-J.
Xue
,
Y.
Zhou
, and
W. W.
Duley
,
Opt. Express
18
,
18945
(
2010
).
5.
Y.
Song
,
J.
Wang
,
M.
Yan
, and
M.
Qiu
,
J. Opt.
13
,
075001
(
2011
).
6.
D.
Dai
,
Y.
Shi
,
S.
He
,
L.
Wosinski
, and
L.
Thylen
,
Opt. Express
19
,
23671
(
2011
).
7.
H.-S.
Chu
,
Y.
Akimov
,
P.
Bai
, and
E.-P.
Li
,
Opt. Lett.
37
,
4564
(
2012
).
8.
S.
Zhu
,
G. Q.
Lo
, and
D. L.
Kwong
,
Opt. Express
20
,
15232
(
2012
).
9.
D.
Dai
and
S.
He
,
Opt. Express
17
,
16646
(
2009
).
10.
M.
Wu
,
Z.
Han
, and
V.
Van
,
Opt. Express
18
,
11728
(
2010
).
11.
J.
Wang
,
X.
Guan
,
Y.
He
,
Y.
Shi
,
Z.
Wang
,
S.
He
,
P.
Holmström
,
L.
Wosinski
,
L.
Thylen
, and
D.
Dai
,
Opt. Express
19
,
838
(
2011
).
12.
M. Z.
Alam
,
J. S.
Aitchison
, and
M.
Mojahedi
,
Opt. Lett.
37
,
55
(
2012
).
13.
Y.
Song
,
J.
Wang
,
M.
Yan
, and
M.
Qiu
,
J. Opt.
13
,
075002
(
2011
).
14.
R. D.
Kekatpure
,
E. S.
Barnard
,
W.
Cai
, and
M. L.
Brongersma
,
Phys. Rev. Lett.
104
,
243902
(
2010
).
15.
Z.
Han
and
S. I.
Bozhevolnyi
,
Opt. Express
19
,
3251
(
2011
).
16.
H.
Lu
,
X.
Liu
,
D.
Mao
,
Y.
Gong
, and
G.
Wang
,
Opt. Lett.
36
,
3233
(
2011
).
17.
H.
Lu
,
X.
Liu
, and
D.
Mao
,
Phys. Rev. A
85
,
053803
(
2012
).
18.
Z.
Han
,
C. E.
Garcia-Ortiz
,
I. P.
Radko
, and
S. I.
Bozhevolnyi
,
Opt. Lett.
38
,
875
(
2013
).
19.
Q.
Xu
,
S.
Sandhu
,
M. L.
Povinelli
,
J.
Shakya
,
S.
Fan
, and
M.
Lipson
,
Phys. Rev. Lett.
96
,
123901
(
2006
).
20.
P. B.
Johnson
and
R. W.
Christy
,
Phys. Rev. B
6
,
4370
(
1972
).
21.
J.
Jin
,
The Finite Element Method in Electromagnetics
(
Wiley
,
New York
,
2002
).
22.
D. I.
Karatzidis
,
T. V.
Yioultsis
, and
E. E.
Kriezis
,
J. Lightwave Technol.
26
,
2002
(
2008
).
23.
O.
Tsilipakos
,
A.
Pitilakis
,
A. C.
Tasolamprou
,
T. V.
Yioultsis
, and
E. E.
Kriezis
,
Opt. Quantum Electron.
42
,
541
(
2011
).
24.
O.
Tsilipakos
,
E. E.
Kriezis
, and
T. V.
Yioultsis
,
Microwave Opt. Technol. Lett.
53
,
2626
(
2011
).
25.
H. A.
Haus
,
Waves and Fields in Optoelectronics
(
Prentice-Hall
,
New Jersey
,
1984
).
26.
O.
Tsilipakos
,
T. V.
Yioultsis
, and
E. E.
Kriezis
,
J. Appl. Phys.
106
,
093109
(
2009
).
27.
O.
Tsilipakos
and
E. E.
Kriezis
,
Opt. Commun.
283
,
3095
(
2010
).
28.
O.
Tsilipakos
,
E. E.
Kriezis
, and
S. I.
Bozhevolnyi
,
J. Appl. Phys.
109
,
073111
(
2011
).
29.
K.
Hassan
,
J.-C.
Weeber
,
L.
Markey
, and
A.
Dereux
,
J. Appl. Phys.
110
,
023106
(
2011
).
30.
M. W.
Geis
,
S. J.
Spector
,
R. C.
Williamson
, and
T. M.
Lyszczarz
,
IEEE Photon. Technol. Lett.
16
,
2514
(
2004
).
You do not currently have access to this content.