The real-time, in-situ bacteria detection on food surfaces was achieved by using a magnetoelastic biosensor combined with a surface-scanning coil detector. This paper focuses on the coil design for signal optimization. The coil was used to excite the sensor's vibration and detect its resonant frequency signal. The vibrating sensor creates a magnetic flux change around the coil, which then produces a mutual inductance. In order to enhance the signal amplitude, a theory of the sensor's mutual inductance with the measurement coil is proposed. Both theoretical calculations and experimental data showed that the working length of the coil has a significant effect on the signal amplitude. For a 1 mm-long sensor, a coil with a working length of 1.3 mm showed the best signal amplitude. The real-time detection of Salmonella bacteria on a fresh food surface was demonstrated using this new technology.

1.
CDC, Estimates of Foodborne Illness in the United States (2011).
2.
FDA, Survey of Domestic Fresh Produce-Domestic Produce Assignment (DFP # 05-20). Attachment D: Tomato Soak Method for Salmonella analysis (2005).
3.
Y.
Chai
,
S.
Li
,
S.
Horikawa
,
M.
Park
,
V.
Vodyanoy
, and
B. A.
Chin
,
J. Food Prot.
75
,
631
(
2012
).
4.
S.
Li
,
Y.
Li
,
H.
Chen
,
S.
Horikawa
,
W.
Shen
,
A.
Simonian
, and
B. A.
Chin
,
Biosens. Bioelectron.
26
,
1313
(
2010
).
5.
M.
Park
,
H. C.
Wikle
,
Y.
Chai
,
S.
Horikawa
,
W.
Shen
, and
B. A.
Chin
,
Food Control
26
,
539
(
2012
).
6.
C. A.
Grimes
,
P. G.
Stoyanov
,
D.
Kouzoudis
, and
K. G.
Ong
,
Rev. Sci. Instrum.
70
,
4711
(
1999
).
7.
P.
Kabos
and
V. S.
Stalmachov
,
Magnetostatic Waves and Their Application
(
Chapman & Hall
,
London
,
1994
), p.
163
.
8.
S.
Li
,
S.
Horikawa
,
M.
Park
,
Y.
Chai
,
V. J.
Vodyanoy
, and
B. A.
Chin
,
Intermetallics
30
,
80
(
2012
).
9.
W.
Shen
,
L. C.
Mathison
,
V. A.
Petrenko
, and
B. A.
Chin
,
Appl. Phys. Lett.
96
,
163502
(
2010
).
10.
C.
Liang
,
S.
Morshed
, and
B. C.
Prorok
, “
Correction for longitudinal mode vibration in thin slender beams
,”
Appl. Phys. Lett.
90
,
221912
(
2007
).
11.
Y.
Chai
,
S.
Horikawa
,
S.
Li
,
H. C.
Wikle
, and
B. A.
Chin
,
Biosens. Bioelectron.
50
,
311
(
2013
).
12.
D. S.
Ballantine
,
R. M.
White
,
S. J.
Martin
,
A. J.
Ricco
,
E. T.
Zellers
,
G. C.
Frye
, and
H.
Wohltjen
,
Acoustic Wave Sensors: Theory, Design and Physico-Chemical Applications
(
Academic
,
New York
,
1997
), p.
41
.
13.
S.
Li
and
Z.
Cheng
,
J. Appl. Phys.
107
,
114514
(
2010
).
14.
S.
Butterworth
and
F. D.
Smith
,
Proc. Phys. Soc.
43
,
166
(
1931
).
15.
C.
Xue
,
X.
Li
, and
C.
Yang
,
IEEE Trans. Magn.
48
,
4092
(
2012
).
16.
W. V.
Moer
and
Y.
Rolain
,
IEEE Microwave Mag.
7
,
46
(
2006
).
17.
B.
Fateh
, Master thesis, University of Rostock, Germany,
2006
.
18.
K.
Surendra
, Master thesis, Virginia Polytechnic Institute and State University,
2011
.
19.
J. D.
Jackson
,
Classical Electrodynamics
(
John Wiley & Sons
,
Danvers
,
1998
), p.
175
.
20.
S.
Li
,
L.
Orona
,
Z.
Li
, and
Z.
Cheng
,
Appl. Phys. Lett.
88
,
073507
(
2006
).
21.
S.
Horikawa
,
D.
Bedi
,
S.
Li
,
W.
Shen
,
S.
Huang
,
I.
Chen
,
Y.
Chai
,
M. L.
Auad
,
M. J.
Bozack
,
J. M.
Barbaree
,
V. A.
Petrenko
, and
B. A.
Chin
,
Biosens. Bioelecron.
26
,
2361
(
2011
).
22.
S.
Huang
,
H.
Yang
,
R. S.
Lakshmanan
,
M. L.
Johnson
,
J.
Wan
,
I.
Chen
,
H. C.
Wikle
,
V. A.
Petrenko
,
J. M.
Barbaree
, and
B. A.
Chin
,
Biosens. Bioelectron.
24
,
1730
(
2009
).
23.
M.
Park
,
J. W.
Park
,
H. C.
Wikle
, and
B. A.
Chin
,
Sens. Actuators B
176
,
1134
(
2013
).
24.
V. A.
Petrenko
and
I. B.
Sorokulova
,
J. Microbiol. Methods
58
,
147
(
2004
).
You do not currently have access to this content.