In this study, a drift-diffusion model is used to derive the current-voltage curves of an organic bilayer solar cell consisting of slabs of electron acceptor and electron donor materials sandwiched together between current collectors. A simplified version of the standard drift-diffusion equations is employed in which minority carrier densities are neglected. This is justified by the large disparities in electron affinity and ionisation potential between the two materials. The resulting equations are solved (via both asymptotic and numerical techniques) in conjunction with (i) Ohmic boundary conditions on the contacts and (ii) an internal boundary condition, imposed on the interface between the two materials, that accounts for charge pair generation (resulting from the dissociation of excitons) and charge pair recombination. Current-voltage curves are calculated from the solution to this model as a function of the strength of the solar charge generation. In the physically relevant power generating regime, it is shown that these current-voltage curves are well-approximated by a Shockley equivalent circuit model. Furthermore, since our drift-diffusion model is predictive, it can be used to directly calculate equivalent circuit parameters from the material parameters of the device.

1.
G. A.
Buxton
and
N.
Clarke
, “
Computer simulation of polymer solar cells
,”
Modell. Simul. Mater. Sci. Eng.
15
,
13
26
(
2007
).
2.
D.
Brinkman
,
K.
Fellner
,
P. A.
Markowich
, and
M. T.
Wolfram
, “
A drift-diffusion-reaction model for excitonic photovoltaic bilayers: Asymptotic analysis and a 2-D HDG finite-element scheme
,”
Math. Models Meth. Appl. Sci.
23
,
839
872
(
2013
).
3.
J. A.
Barker
,
C. M.
Ramsdale
, and
N. C.
Greenham
, “
Modelling the current-voltage characteristics of bilayer polymer photovoltaic devices
,”
Phys. Rev. B
67
,
075205
(
2003
).
4.
D.
Cheyns
,
J.
Heremans
,
P.
Deibel
,
C.
Verlaak
,
S.
Rand
, and
J.
Genoe
, “
Analytical model for the open-circuit voltage and its associated resistance in organic planar heterojunction solar cells
,”
Phys. Rev. B
77
,
165332
(
2008
).
5.
J. D.
Cole
, “
Limit process expansions and homogenization
,”
SIAM J. Appl. Math.
55
,
410
424
(
1995
).
6.
D.
Credgington
,
Y.
Kim
,
J.
Labram
,
T. D.
Anthopoulos
, and
J. R.
Durrant
, “
Analysis of recombination losses in a Pentacene/C60 organic bilayer
,”
J. Phys. Chem. Lett.
2
,
2759
2763
(
2011
).
7.
B. K.
Crone
,
P. S.
Davids
,
I. H.
Campbell
, and
D. L.
Smith
, “
Device model investigation of bilayer organic light emitting diodes
,”
J. Appl. Phys.
87
,
1974
(
2000
).
8.
P. S.
Davids
,
I. H.
Campbell
, and
D. L.
Smith
, “
Device model for single carrier organic diodes
,”
J. Appl. Phys.
82
,
6319
(
1997
).
9.
L. N.
Trefethen
 et al, Chebfun Version 4.2, The Chebfun Development Team,
2011
, see http://www.maths.ox.ac.uk/chebfun/.
10.
C.
de Falco
,
R.
Sacco
, and
M.
Verri
, “
Analytical and numerical study of photocurrent transients in organic polymer solar cells
,”
Comput. Meth. Appl. Mech. Eng.
199
,
1722
1732
(
2010
).
11.
D.
Gebeyehu
,
C. J.
Brabec
,
F.
Padinger
,
T.
Fromherz
,
J. C.
Hummelen
,
D.
Badt
,
H.
Schindler
, and
N. S.
Sariciftci
, “
The interplay of efficiency and morphology in photovoltaic devices based on interpenetrating networks of conjugated polymers with fullerenes
,”
Synth. Met.
118
,
1
9
(
2001
).
12.
K. A.
Gregg
and
M. C.
Hanna
, “
Comparing organic to inorganic photovoltaic cells: Theory, experiment, and simulation
,”
J. Appl. Phys.
93
,
3605
3614
(
2003
).
13.
C.
Groves
,
J. C.
Blakesley
, and
N. C.
Greenham
, “
Effect of charge trapping on geminate recombination and polymer solar cell performance
,”
Nano Lett.
10
,
1063
1069
(
2010
).
14.
S.
Günes
,
H.
Neugebauer
, and
N. S.
Sariciftci
, “
Conjugated polymer-based organic solar cells
,”
Chem. Rev.
107
,
1324
(
2007
).
15.
H.
Hoppe
and
N. S.
Sariciftci
, “
Organic solar cells: An overview
,”
J. Mater. Res.
19
,
1924
1945
(
2004
).
16.
P. E.
de Jongh
and
D.
Vanmaekelbergh
, “
Trap-limited transport in assemblies of nanometer-size TiO2 particles
,”
Phys. Rev. Lett.
77
,
3427
3430
(
1996
).
17.
B.
Kippelen
and
D.
Vanmaekelbergh
, “
Organic photovoltaics
,”
Energy Environ. Sci.
2
,
251
261
(
2009
).
18.
T.
Kirchartz
,
B. E.
Pieters
,
J.
Kirkpatrick
,
U.
Rau
, and
J.
Nelson
, “
Recombination of tail states in polythiopene: Fullerene solar cells
,”
Phys. Rev. B.
83
,
115209
(
2011
).
19.
D.
Knipp
, “
Pentacene thin film transistors on inorganic dielectrics: Morphology, structural properties, and electronic transport
,”
J. Appl. Phys.
93
,
347
355
(
2003
).
20.
L. J. A.
Koster
,
E. C. P.
Smits
,
V. D.
Mihailetchi
, and
V. W. M.
Blom
, “
Device model for the operation of polymer/fullerine bulk heterojunction solar cells
,”
Phys. Rev. B.
72
,
085205
(
2005
).
21.
J.
Kirkpatrick
,
V.
Marcon
,
K.
Kremer
,
J.
Nelson
, and
D.
Andrienko
, “
Charge mobility in discotic mesophases: A multiscale quantum and classical study
,”
Phys. Rev. Lett.
98
,
227402
(
2007
).
22.
F. C.
Krebs
, “
Fabrication and processing of polymer solar cells: A review of printing and coating techniques
,”
Sol. Energy Mater Sol. Cells
93
,
394
412
(
2009
).
23.
A.
Manor
,
E. A.
Tromholt
, and
F. C.
Krebs
, “
Electrical and photo-induced degradation of ZnO layers in photovoltaics
,”
Adv. Energy Mater.
1
,
836
843
(
2011
).
24.
C. M.
Martin
,
V. M.
Burlakov
,
H. E.
Assender
, and
D. A. R.
Barkhouse
, “
A numerical model for explaining the role of the interface morphology in composite solar cells
,”
J. Appl. Phys.
102
,
104506
(
2007
).
25.
J.
Nelson
,
The Physics of Solar Cells
(
Imperial College Press
,
2003
).
26.
J.
Nelson
,
J.
Kirkpatrick
, and
P.
Revirajan
, “
Factors limiting the efficiency of molecular photovoltaic devices
,”
Phys. Rev. B
69
,
035337
(
2004
).
27.
T.
Offermans
,
S. C. J.
Meskers
, and
R. A. J.
Janssen
, “
Monte-Carlo simulations of geminate electron-hole pair dissociation in a molecular heterojunction: A two step dissociation mechanism
,”
Chem. Phys.
308
,
125
133
(
2005
).
28.
P.
Peumans
,
S.
Uchida
, and
S. R.
Forrest
, “
Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films
,”
Nature
425
,
158
162
(
2003
).
29.
W. J.
Potscavage
,
S.
Yoo
, and
B.
Kippelen
, “
Origin of the open-circuit voltage in a multillayer heterojunction organic solar cell
,”
Appl. Phys. Lett.
93
,
193308
(
2008
).
30.
L.
Pautmeier
,
R.
Richert
, and
H.
Bassler
, “
Poole–Frenkel behaviour of charge transport in organic solid with off-diagonal disorder studied by Monte-Carlo simulations
,”
Synth. Met.
37
,
271
(
1990
).
31.
G.
Richardson
,
G.
Denuault
, and
C. P.
Please
, “
Multiscale modelling and analysis of lithium-ion battery charge and discharge
,”
J. Eng. Math.
72
,
41
72
(
2012
).
32.
G.
Richardson
,
C.
Please
,
J.
Foster
, and
J.
Kirkpatrick
, “
Asymptotic solution of a model for bilayer organic diodes and solar cells
,”
SIAM J. Appl. Math.
72
,
1792
1817
(
2012
).
33.
G. G.
Malliaras
and
J. C.
Scott
, “
The roles of injection and mobility in organic light emitting diodes
,”
J. Appl. Phys.
83
,
5399
5403
(
1998
).
34.
B.
Stuart
, “
Heliatek achieves 10.7 percent OPV efficiency; to begin module production this year
,”
PV magazine
(
2012
).
35.
S. M.
Sze
and
K. N.
Kwok
,
Physics of Semiconductor Devices
(
Wiley-
Interscience,
New York
,
2006
).
36.
C. W.
Tang
, “
Two-layer organic photovoltaic cell
,”
Appl. Phys. Lett.
48
,
183
185
(
1986
).
37.
W.
Tress
,
K.
Leo
, and
M.
Riede
, “
Influence of hole-transport layers and donor materials on open-circuit voltage and shape of I-V curves of organic solar cells
,”
Adv. Funct. Mater.
21
,
2140
2149
(
2011
).
38.
W.
Tress
,
K.
Leo
, and
M.
Riede
, “
Photoconductivity as a loss mechanism in organic solar cells
,”
Phys. Status Solidi (RRL)
7
,
401
405
(
2013
).
39.
W.
Tress
,
A.
Petrich
,
M.
Hummert
,
M.
Hein
,
K.
Leo
, and
M.
Riede
, “
Imbalanced mobilities causing S-shaped IV curves in planar heterojunction solar cells
,”
Appl. Phys. Lett.
98
,
063301
(
2011
).
40.
S.
Verlaak
,
D.
Beljonne
,
D.
Cheyns
,
C.
Rolin
,
M.
Linares
,
F.
Castet
,
J.
Cornil
, and
P.
Heremans
, “
Electronic structure and geminate pair energetics at organic-organic interfaces: The case of pentacene/C60 heterojunctions
,”
Adv. Funct. Mater.
19
,
3809
3814
(
2009
).
You do not currently have access to this content.