Formation of intrinsic acceptor defects in ZnO is rare due to the low formation energy of donors. Understanding this phenomenon is of interest for the fabrication of high quality light emitting diodes. Herein, we examine the temperature dependent formation of defects in nanocrystalline ZnO through a combination of X-ray excited optical luminescence (XEOL) together with X-ray absorption near edge structures (XANES) and electron spin resonance (ESR). Certain defects are shown to form under low temperature and are unstable above 700 °C. These defects have high g-values characteristic of acceptors and short spin-lattice relaxation times. XEOL measurements show that acceptor defects with a characteristic red luminescence are also formed under these conditions. Low g-value (donor) defects forming at temperatures >700 °C are shown to have spin-lattice relaxation characteristic of nonradiative recombination centers.

1.
C. W.
Bunn
,
Proc. Phys. Soc. London
47
,
835
(
1935
).
2.
Ü.
Özgür
,
Y. I.
Alivov
,
C.
Liu
,
A.
Teke
,
M. A.
Reshchikov
,
S.
Doğan
,
V.
Avrutin
,
S. J.
Cho
, and
H.
Morkoç
,
J. Appl. Phys.
98
,
041301
(
2005
).
3.
Y.
Inubushi
,
R.
Takami
,
M.
Iwasaki
,
H.
Tada
, and
S.
Ito
,
J. Colloid Interface Sci.
200
,
220
(
1998
).
4.
L.
Armelao
,
F.
Heigl
,
S.
Brunet
,
R.
Sammynaiken
,
T.
Regier
,
R. I. R.
Blyth
,
L.
Zuin
,
R.
Sankari
,
J.
Vogt
, and
T. K.
Sham
,
ChemPhysChem
11
,
3625
(
2010
).
5.
W. J.
Li
,
E. W.
Shi
,
W. Z.
Zhong
, and
Z. W.
Yin
,
J. Cryst. Growth
203
,
186
(
1999
).
6.
P.
Fons
,
K.
Iwata
,
S.
Niki
,
A.
Yamada
, and
K.
Matsubara
,
J. Cryst. Growth
201–202
,
627
(
1999
).
7.
M.
Huang
,
Y.
Wu
,
H.
Feick
,
N.
Tran
,
E.
Weber
, and
P.
Yang
,
Adv. Mater.
13
,
113
(
2001
).
8.
S. B.
Zhang
,
S.-H.
Wei
, and
A.
Zunger
,
Phys. Rev. B
63
,
075205
(
2001
).
9.
R. C.
Wang
,
C.-P.
Liu
,
J.-L.
Huang
, and
S.-J.
Chen
,
Appl. Phys. Lett.
87
,
053103
(
2005
).
10.
Y. Q.
Chen
,
J.
Jiang
,
Z. Y.
He
,
Y.
Su
,
D.
Cai
, and
L.
Chen
,
Mater. Lett.
59
,
3280
(
2005
).
11.
T. K.
Sham
,
Int. J. Nanotechnol.
5
,
1194
(
2008
).
12.
T.
Regier
,
J.
Krochak
,
T. K.
Sham
,
Y. F.
Hu
,
J.
Thompson
, and
R. I. R.
Blyth
,
Nucl. Instrum. Methods Phys. Res. A
582
,
93
(
2007
).
13.
C. P.
Poole
,
Electron Spin Resonance: A Comprehensive Treatise on Experimental Techniques
, 2nd ed. (
John Wiley & Sons
,
New York
,
1983
), pp.
589
599
.
14.
D. M.
Hofmann
,
A.
Hofstaetter
,
F.
Leiter
,
H.
Zhou
,
F.
Henecker
, and
B. K.
Meyer
,
Phys. Rev. Lett.
88
,
045504
1
(
2002
).
15.
C. G.
Van de Walle
,
Phys. Rev. Lett.
85
,
1012
(
2000
).
16.
S. T.
Teklemichael
,
W. M.
Hlaing
,
M. D.
McCluskey
,
E. D.
Walter
, and
D. W.
Hoy
,
Appl. Phys. Lett.
98
,
232112
(
2011
).
17.
F. H.
Leiter
,
H. R.
Alves
,
A.
Hofstaetter
,
D. M.
Hofmann
, and
B. K.
Meyer
,
Phys. Status Solidi B
226
,
R4
(
2001
).
18.
R.
Dingle
,
Phys. Rev. Lett.
23
,
579
(
1969
).
19.
C. G.
Van de Walle
,
Physica B
308–310
,
899
(
2001
).
20.
B. K.
Meyer
,
H.
Alves
,
D. M.
Hofmann
,
W.
Kriegseis
,
D.
Forster
,
F.
Bertram
,
J.
Christen
,
A.
Hoffmann
,
M.
Straburg
,
M.
Dworzak
,
U.
Haboeck
, and
A. V.
Rodina
,
Phys. Status Solidi B
241
,
231
(
2004
).
21.
L. A.
Kappers
,
O. R.
Gilliam
,
S. M.
Evans
,
L. E.
Halliburton
, and
N. C.
Giles
,
Nucl. Instrum. Methods Phys. Res. B
266
,
2953
(
2008
).
22.
R.
Vidya
,
P.
Ravindran
,
H.
Fjellv
,
B. G.
Svensson
,
E.
Monakhov
,
M.
Ganchenkova
, and
R. M.
Nieminen
,
Phys. Rev. B
83
,
045206
(
2011
).
23.
A.
Abragham
and
B.
Bleaney
,
Electron Paramagnetic Resonance of Transition Ions
(
Clarendon
,
Oxford
,
1970
), p.
453
.
24.
S. J.
Baik
,
J. H.
Jang
,
C. H.
Lee
,
W. Y.
Cho
, and
K. S.
Lim
,
Appl. Phys. Lett.
70
,
3516
(
1997
).
25.
B.
Ravel
and
M.
Newville
,
J. Synchrotron Radiat.
12
,
537
(
2005
).
26.
See supplementary material at http://dx.doi.org/10.1063/1.4794001 for SEM images of particles and a listing of the XEOL peak fitting data.

Supplementary Material

You do not currently have access to this content.