Structural and magnetic properties of the group III-V diluted magnetic semiconductor In1−xMnxSb with x = 0.005–0.06, including the nuclear magnetic resonance (NMR) investigations, are reported. Polycrystalline In1−xMnxSb samples were prepared by direct alloying of indium antimonide, manganese and antimony, followed by a fast cooling of the melt with a rate of 10–12 K/s. According to the X-ray diffraction data, part of Mn is substituted for In, forming the In1−xMnxSb matrix. Atomic force microscopy and scanning tunneling microscopy investigations provide evidence for the presence of microcrystalline MnSb inclusions (precipitates), having a size of ∼100–600 nm, and the fine structure of nanosize grains with a Gaussian distribution around the diameter of ∼24 nm. According to the NMR spectra, the majority of Mn enters the MnSb inclusions. In addition to the single Mn ions, which contribute to the magnetization M (T) only in the low-temperature limit of T < 10–20 K, and MnSb nanoprecipitates responsible for the ferromagnetic (FM) properties of In1−xMnxSb, a superparamagnetic (SP) contribution of atomic-size magnetic Mn complexes (presumably dimers) has been established. The fraction of the MnSb phase, η ∼ 1–4%, as well as the concentration, nsp ∼ (0.8–3.2) × 1019 cm−3, and the magnetic moment of the Mn dimers, μ ∼ 8–9 μB, are determined. The solubility limit of Mn in the InSb matrix, NSL ∼ 1020 cm−3, is estimated. Hysteresis in low (H < 500 Oe) magnetic fields and saturation of the magnetization in high (H > 20 kOe) magnetic fields are observed, indicating a presence of the SP and FM contributions to the dependence of M (H) up to T ∼ 500 K. The hysteresis is characterized by the coercivity field, Hc, decreasing between ∼100 and 75 Oe when T is increased from 5 to 510 K. The values of Hc are in reasonable agreement with the effect of the largest MnSb inclusions. The maximum of M (T), measured in the zero-field-cooled and the field-cooled conditions in a weak field of 500 Oe, is observed at T ∼ 510 K and is attributable to the Hopkinson effect.

1.
T.
Jungwirth
,
J.
Sinova
,
J.
Masek
,
J.
Kucera
, and
A. H.
MacDonald
,
Rev. Mod. Phys.
78
,
809
(
2006
).
2.
I.
Zutic
,
J.
Fabian
, and
S.
Das Sarma
,
Rev. Mod. Phys.
76
,
323
(
2004
).
3.
L.
Chen
,
X.
Yang
,
F.
Yang
,
J.
Zhao
,
J.
Misuraca
,
P.
Xiong
, and
S.
von Molnar
,
Nano Lett.
11
,
2584
(
2011
).
4.
W.
Walukiewicz
,
Physica B
302–303
,
123
(
2001
).
5.
K. M.
Yu
,
W.
Walukiewicz
,
T.
Wojtowicz
,
M. W.
Lim
,
X
Liu
,
U.
Bindley
,
M.
Dobrowolska
, and
J. K.
Furduna
,
Phys. Rev. B
68
,
041308
R
(
2003
).
6.
T.
Jungwirth
,
J.
Konig
,
J.
Sinova
, and
A. H.
MacDonald
,
Phys. Rev. B
66
,
012402
(
2002
).
7.
L.
Pytlik
and
A.
Zieba
,
J. Magn. Magn. Mater.
51
,
199
(
1985
).
8.
W. J.
Takei
,
D. E.
Cox
, and
G.
Shirane
,
Phys. Rev.
129
,
2008
(
1963
).
9.
K. Y.
Wang
,
M.
Sawicki
,
K. W.
Edmonds
,
R. P.
Campion
,
A. W.
Rushforth
,
A. A.
Freeman
,
C. T.
Foxon
,
B. L.
Gallagher
, and
T.
Dietl
,
Appl. Phys. Lett.
88
,
022510
(
2006
).
10.
V. V.
Rylkov
,
B. A.
Aronzon
,
Yu. A.
Danilov
,
Yu. N.
Drozdov
,
V. P.
Lesnikov
,
K. I.
Maslakov
, and
V. V.
Podolskii
,
JETP
100
,
742
(
2005
).
11.
S. A.
Obukhov
,
B. S.
Neganov
,
Yu. S.
Kiselev
,
A. N.
Chernikov
,
V. S.
Vekshina
,
N. I.
Pepik
, and
A. N.
Popkov
,
Cryogenics
31
,
874
(
1991
).
12.
P. A.
Lee
and
T. V.
Ramakrishnan
,
Rev. Mod. Phys.
57
,
287
(
1985
);
B. L.
Altshuler
and
A. G.
Aronov
, in
Electron-Electron Interaction in Disordered Systems
, edited by
A. L.
Efros
and
M.
Pollak
(
North-Holland
,
Amsterdam
,
1985
), p.
155
.
13.
T.
Wojtowicz
,
G.
Cywinski
,
W. L.
Lim
,
X.
Liu
,
M.
Dobrowolska
,
J. K.
Furduna
,
K. M.
Yu
,
W.
Walukiewicz
,
G. B.
Kim
,
M.
Cheon
,
X.
Chen
,
S. M.
Wang
, and
H.
Luo
,
Appl. Phys. Lett.
82
,
4310
(
2003
).
14.
S.
Yanagi
,
K.
Kuga
,
T.
Slupinski
, and
H.
Munekata
,
Physica E
20
,
333
(
2004
).
15.
X.
Chen
,
M.
Na
,
M.
Cheon
,
S.
Wang
,
H.
Luo
,
D.
McComb
,
X.
Liu
,
Y.
Sasaki
,
T.
Wojtowicz
,
J. K.
Furduna
,
S. G.
Potashnik
, and
P.
Schiffer
,
Appl. Phys. Lett.
81
,
511
(
2002
).
16.
G.
Mihaly
,
M.
Csontos
,
S.
Bordacs
,
I.
Kezsmarki
,
T.
Wojtowicz
,
X.
Liu
,
B.
Janko
, and
J. K.
Furduna
,
Phys. Rev. Lett.
100
,
107201
(
2008
).
17.
M.
Csontos
,
T.
Wojtowicz
,
X.
Liu
,
M.
Dobrovolska
,
B.
Janko
,
J. K.
Furduna
, and
G.
Mihaly
,
Phys. Rev. Lett.
95
,
227203
(
2005
).
18.
M.
Csontos
,
G.
Mihaly
,
B.
Janko
,
T.
Wojtowicz
,
X.
Liu
, and
J. K.
Furduna
,
Nature Mater.
4
,
447
(
2005
).
19.
J.
Hollingswort
and
P. R.
Bandaru
,
Mater. Sci. Eng. B
151
,
152
(
2008
).
20.
Yu. A.
Danilov
,
E. S.
Demidov
,
Yu. N.
Drosdov
,
V. P.
Lesnikov
,
V. V.
Podolski
,
M. V.
Sapozhnikov
, and
A. P.
Kasatkin
,
J. Magn. Magn. Mater.
300
,
e24
(
2006
).
21.
K.
Ganesan
,
S.
Mariyappan
, and
H. L.
Bhat
,
Solid State Commun.
143
,
272
(
2007
).
22.
K.
Ganesan
and
H. L.
Bhat
,
J. Appl. Phys.
103
,
043701
(
2008
).
23.
V. M.
Novotortsev
,
I. S.
Zakharov
,
A. V.
Kochura
,
S. F.
Marenkin
,
R.
Laiho
,
E.
Lahderanta
,
A.
Lashkul
,
A. G.
Veresov
,
A. V.
Molchanov
, and
G. S.
Yur'ev
,
Russian J. Inorg. Chem.
51
,
1627
(
2006
).
24.
V. A.
Ivanov
,
O. N.
Pashkova
,
E. A.
Ugolkova
,
V. P.
Sanygin
, and
R. M.
Galera
,
Inorg. Mater.
44
,
1041
(
2008
).
25.
N. D.
Parashar
,
N.
Rangaraju.
,
V. K.
Lazarov
,
S.
Xie
, and
B. W.
Wessels
,
Phys. Rev. B
81
,
115321
(
2010
).
26.
J. A.
Peters
,
N.
Rangaraju
,
C.
Feeser
, and
B. W.
Wessels
,
Appl. Phys. Lett.
98
,
193506
(
2011
).
27.
H.
Raebiger
,
A.
Ayuela
, and
J.
von Boehm
,
Phys. Rev. B.
72
,
014465
(
2005
).
28.
Y. L.
Soo
,
S.
Kim
,
Y. H.
Kao
,
A. J.
Blattner
,
B. W.
Wessels
,
S.
Khalid
,
C.
Sanchez Hanke
, and
C. C.
Kao
,
Appl. Phys. Lett.
84
,
481
(
2004
).
29.
C.
Jaeger
,
C.
Bihler
,
T.
Valliatis
,
S. T. B.
Coennenwein
,
M.
Opel
,
R.
Gross
, and
M. S.
Brandt
,
Phys. Rev. B
74
,
045330
(
2006
).
30.
G.
Allodi
,
A.
Banderini
,
R.
De Renzi
, and
C.
Vignali
,
Rev. Sci. Instrum.
76
,
83911
(
2005
).
31.
J. A.
Dean
,
Lange's Handbook of chemistry
, 15th ed. (
McGraw-Hill
,
New York
,
1999
), pp.
4
30
4
34
.
32.
L.
Rednic
,
I. G.
Deac
,
E.
Dorolti
,
M.
Coldea
,
V.
Rednic
, and
M.
Neumann
,
Cent. Eur. J. Phys.
8
,
620
(
2010
).
33.
A. J.
Freeman
and
R. E.
Watson
,
Magnetism
, edited
G. T.
Rado
and
H.
Suhl
(
Academic
,
New York and London
,
1965
), Vol.
2 A
, p.
168
.
34.
M. I.
Kurkin
and
E. A.
Turov
,
NMR in Magnetically Ordered Materials and Its Applications
(
Nauka
,
Moscow
,
1990
).
35.
A.
Tsujimura
,
T.
Hihara
, and
Y.
Koi
,
J. Phys. Soc. Jpn.
17
,
1078
(
1962
);
T.
Rajasekharan
and
K. V. S.
Rama Rao
,
Phys. Status Solidi A
50
,
303
(
1978
);
K.
Le Dang
,
P.
Veillet
,
P.
Beauvillain
,
N.
Nakayama
, and
T.
Shinjou
,
J. Phys.: Condens. Matter
1
,
6153
(
1989
).
36.
N. D.
Parashar
,
D. J.
Keavney
, and
B. W.
Wessels
,
Appl. Phys. Lett.
95
,
201905
(
2009
).
37.
C. E.
Feeser
,
L.
Lari
,
V. K.
Lazarov
,
J. A.
Peters
, and
B. W.
Wessels
,
J. Vac. Sci. Technol. B.
30
,
032801
(
2012
).
38.
A small mass fraction of the MnSb phase and its non-uniform distribution could be the reasons for the lacking of its observation in Ref. 25. In addition, formation of MnSb precipitates is stimulated, generally, by the overall increase of the Mn content in InMnSb epitaxial films.
39.
C. P.
Bean
and
J. D.
Livingston
,
J. Appl. Phys.
30
,
120S
(
1959
).
40.
M. Y.
Dashevskii
,
V. S.
Ivleva
,
L. Y.
Krol
,
I. N.
Kurilenko
,
L. B.
Litvak-Gorskaya
,
R. S.
Mitrofanova
, and
E. Y.
Fridlyand
,
Sov. Phys. Semicond.
5
,
757
(
1971
).
41.
D.
Chowdhury
,
Spin Glasses and Other Frustrated Systems
(
World Scientific
,
Singapore
,
1986
);
S. L.
Ginzburg
,
Irreversible Phenomena of Spin Glasses
(
Nauka
,
Moscow
,
1989
).
42.
S.
Prasad
and
N. S.
Gajbhiye
,
J. Alloys Compd.
265
,
87
(
1998
).
43.
H.
Zhang
,
S. S.
Kushvaha
,
S.
Chen
,
X.
Gao
,
D.
Qi
,
A. T. S.
Wee
, and
X.-S.
Wang
,
Appl. Phys. Lett.
90
,
202503
(
2007
).
44.
B. L.
Low
,
C. K.
Ong
,
J.
Lim
,
A. C. H.
Huan
,
H.
Gong
, and
T. Y. F.
Liew
,
J. Appl. Phys.
85
,
7340
(
1999
).
You do not currently have access to this content.