We quantitatively compared film-level ferromagnetic resonance (FMR) measurements using standard vector network analyzer (VNA) techniques with device-level FMR measurements for both thermal FMR (T-FMR) and field-swept spin-torque FMR (FS-ST-FMR) techniques on magnetic tunnel junction (MTJ) thin films with in-plane magnetization. The film and FS-ST-FMR device determination of damping α are in agreement; however, α cannot be reliably determined by use of T-FMR device measurements due to bandwidth limitations. The device-level intercept of Hres vs. f is lower than film-level measurements of the effective magnetization (Meff) due to the demagnetizing field and exchange coupling of the patterned free layer. The intercept shows device-to-device variations due to a combination of size variation and local film variations. At the device level, the inhomogeneous broadening (ΔH0) is nearly zero, while in film-level measurements, μ0ΔH0 > 10 mT due to averaging of the local film variations detected explicitly in the intercept of Hres vs. f at the device level. These results suggest that continuous-film and FS-ST-FMR measurements on multiple devices can provide comparable information about thin-film Meff, α, and ΔH0 with minimal interpretation, but caution is necessary when using T-FMR to determine α or ΔH0.

1.
P. M.
Braganca
,
I. N.
Krivorotov
,
O.
Ozatay
,
A. G. F.
Garcia
,
N. C.
Emley
,
J. C.
Sankey
,
D. C.
Ralph
, and
R. A.
Buhrman
,
Appl. Phys. Lett.
87
,
112507
(
2005
).
2.
W. F.
Egelhoff
, Jr.
,
P. W. T.
Pong
,
J.
Unguris
,
R. D.
McMichael
,
E. R.
Nowak
,
A. S.
Edelstein
,
J. E.
Burnette
, and
G. A.
Fischer
,
Sens. Actuators A
155
,
217
(
2009
).
3.
H. T.
Nembach
,
T. J.
Silva
,
J. M.
Shaw
,
M. L.
Schneider
,
M. J.
Carey
,
S.
Maat
, and
J. R.
Childress
,
Phys. Rev. B
84
,
054424
(
2011
).
4.
J. -M. L.
Beaujour
,
W.
Chen
,
A. D.
Kent
, and
J. Z.
Sun
,
J. Appl. Phys.
99
,
08N503
(
2006
).
5.
R.
Urban
,
G.
Woltersdorf
, and
B.
Heinrich
,
Phys. Rev. Lett.
87
,
217204
(
2001
).
6.
M.
Farle
,
Rep. Progress Phys.
61
,
755
(
1998
).
7.
H. T.
Nembach
,
H.
Bauer
,
J. M.
Shaw
,
M. L.
Schneider
, and
T. J.
Silva
,
Appl. Phys. Lett.
95
,
062506
(
2009
).
8.
H. T.
Nembach
,
J. M.
Shaw
,
T. J.
Silva
,
W. L.
Johnson
,
S. A.
Kim
,
R. D.
McMichael
, and
P.
Kabos
,
Phys. Rev. B
83
,
094427
(
2011
).
9.
A.
Helmer
,
S.
Cornelissen
,
T.
Devolder
,
J.-V.
Kim
,
W.
van Roy
,
L.
Lagae
, and
C.
Chappert
,
Phys. Rev. B
81
,
094416
(
2010
).
10.
A. M.
Deac
,
A.
Fukushima
,
H.
Kubota
,
H.
Maehara
,
Y.
Suzuki
,
S.
Yuasa
,
Y.
Nagamine
,
K.
Tsunekawa
,
D. D.
Djayaprawira
, and
N.
Watanabe
,
Nature Phys.
4
,
803
(
2008
).
11.
Y.
Guan
,
D. W.
Abraham
,
M. C.
Gaidis
,
G.
Hu
,
E. J.
O'Sullivan
,
J. J.
Nowak
,
P. L.
Trouilloud
,
D. C.
Worledge
, and
J. Z.
Sun
,
J. Appl. Phys.
105
,
07D127
(
2009
).
12.
Y.
Guan
,
J. Z.
Sun
,
X.
Jiang
,
R.
Moriya
,
L.
Gao
, and
S. S. P.
Parkin
,
Appl. Phys. Lett.
95
,
082506
(
2009
).
13.
S.
Petit
,
N.
de Mestier
,
C.
Baraduc
,
C.
Thirion
,
Y.
Liu
,
M.
Li
,
P.
Wang
, and
B.
Dieny
,
Phys. Rev. B
78
,
184420
(
2008
).
14.
G. D.
Fuchs
,
J. C.
Sankey
,
V. S.
Pribiag
,
L.
Qian
,
P. M.
Braganca
,
A. G. F.
Garcia
,
E. M.
Ryan
,
Z.-P.
Li
,
O.
Ozatay
,
D. C.
Ralph
, and
R. A.
Buhrman
,
Appl. Phys. Lett.
91
,
062507
(
2007
).
15.
C.
Wang
,
Y.-T.
Cui
,
J. Z.
Sun
,
J. A.
Katine
,
R. A.
Buhrman
, and
D. C.
Ralph
,
Phys. Rev. B
79
,
224416
(
2009
).
16.
J. C.
Sankey
,
Y.-T.
Cui
,
J. Z.
Sun
,
J. C.
Slonczewski
,
R. A.
Buhrman
, and
D. C.
Ralph
,
Nat. Physics
4
,
67
(
2008
).
17.
J. C.
Sankey
,
P. M.
Braganca
,
A. G. F.
Garcia
,
I. N.
Krivorotov
,
R. A.
Buhrman
, and
D. C.
Ralph
,
Phys. Rev. Lett.
96
,
227601
(
2006
).
18.
W.
Chen
,
J.-M. L.
Beaujour
,
G.
de Loubens
,
A. D.
Kent
, and
J. Z.
Sun
,
Appl. Phys. Lett.
92
,
012507
(
2008
).
19.
H.
Kubota
,
A.
Fukushima
,
K.
Yakushiji
,
T.
Nagahama
,
S.
Yuasa
,
K.
Ando
,
H.
Maehara
,
Y.
Nagamine
,
K.
Tsunekawa
,
D. D.
Djayaprawira
,
N.
Watanabe
, and
Y.
Suzuki
,
Nat. Phys.
4
,
37
(
2008
).
20.
S.
Ishibashi
,
K.
Ando
,
T.
Seki
,
T.
Nozaki
,
H.
Kubota
,
S.
Yakata
,
H.
Maehara
,
A.
Fukushima
,
S.
Yuasa
, and
Y.
Suzuki
,
IEEE Trans. Magn.
47
,
3373
(
2011
).
21.
D.
Bang
,
T.
Taniguchi
,
H.
Kubota
,
T.
Yorozu
,
H.
Imamura
,
K.
Yakushiji
,
A.
Fukushima
,
S.
Yuasa
, and
K.
Ando
,
J. Appl. Phys.
111
,
07C917
(
2012
).
22.
H.
Lee
,
Y.-H. A.
Wang
,
C. K. A.
Mewes
,
W. H.
Butler
,
T.
Mewes
,
S.
Maat
,
B.
York
,
M. J.
Carey
, and
J. R.
Childress
,
Appl. Phys. Lett.
95
,
082502
(
2009
).
23.
D. J.
Twisselmann
and
R. D.
McMichael
,
J. Appl. Phys.
93
,
6903
(
2003
).
24.
L.
Torres
,
G.
Finocchio
,
L.
Lopez-Diaz
,
E.
Martinez
,
M.
Carpentieri
,
G.
Consolo
, and
B.
Azzerboni
,
J. Appl. Phys.
101
,
09A502
(
2007
).
25.
R. D.
McMichael
and
M. D.
Stiles
,
J. Appl. Phys.
97
,
10J901
(
2005
).
26.
M. J.
Donahue
and
D. G.
Porter
,
OOMMF User's Guide, Version 1.0
(
National Institute of Standards and Technology
,
Gaithersburg, MD
,
1999
).
27.
R. D.
McMichael
,
D. J.
Twisselmann
, and
A.
Kunz
,
Phys. Rev. Lett.
90
,
227601
(
2003
).
You do not currently have access to this content.