Ultrathin amorphous carbon (a-C) films are extensively used as protective overcoats of magnetic recording media. Increasing demands for even higher storage densities have necessitated the development of new storage technologies, such as heat-assisted magnetic recording (HAMR), which uses laser-assisted heating to record data on high-stability media that can store single bits in extremely small areas (∼1 Tbit/in.2). Because HAMR relies on locally changing the coercivity of the magnetic medium by raising the temperature above the Curie temperature for data to be stored by the magnetic write field, it raises a concern about the structural stability of the ultrathin a-C film. In this study, rapid thermal annealing (RTA) experiments were performed to examine the thermal stability of ultrathin hydrogenated amorphous carbon (a-C:H) films deposited by plasma-enhanced chemical vapor deposition. Structural changes in the a-C:H films caused by RTA were investigated by x-ray photoelectron spectroscopy, Raman spectroscopy, x-ray reflectivity, and conductive atomic force microscopy. The results show that the films exhibit thermal stability up to a maximum temperature in the range of 400–450 °C. Heating above this critical temperature leads to hydrogen depletion and sp2 clustering. The critical temperature determined by the results of this study represents an upper bound of the temperature rise due to laser heating in HAMR hard-disk drives and the Curie temperature of magnetic materials used in HAMR hard disks.

1.
H.
Tsai
and
D. B.
Bogy
,
J. Vac. Sci. Technol. A
5
,
3287
(
1987
).
2.
A.
Grill
,
Surf. Coat. Technol.
94–95
,
507
(
1997
).
3.
J.
Robertson
,
Mater. Sci. Eng. R
37
,
129
(
2002
).
4.
M.
Zhong
,
C.
Zhang
,
J.
Luo
, and
X.
Lu
,
Appl. Surf. Sci.
256
,
322
(
2009
).
5.
H.-S.
Zhang
and
K.
Komvopoulos
,
J. Appl. Phys.
105
,
083305
(
2009
).
6.
H.-S.
Zhang
and
K.
Komvopoulos
,
J. Appl. Phys.
106
,
093504
(
2009
).
7.
M. A.
Samad
,
E.
Rismani
,
H.
Yang
,
S. K.
Sinha
, and
C. S.
Bhatia
,
Tribol. Lett.
43
,
247
(
2011
).
8.
Z. Y.
Chen
,
J. P.
Zhao
,
T.
Yano
, and
T.
Ooie
,
Diamond Relat. Mater.
11
,
1629
(
2002
).
9.
D. J.
Li
,
M. U.
Guruz
,
C. S.
Bhatia
, and
Y.-W.
Chung
,
Appl. Phys. Lett.
81
,
1113
(
2002
).
10.
Z. Z.
Bandić
and
R. H.
Victora
,
Proc. IEEE
96
,
1749
(
2008
).
11.
M. H.
Kryder
,
E. C.
Gage
,
T. W.
McDaniel
,
W. A.
Challener
,
R. E.
Rottmayer
,
G.
Ju
,
Y.-T.
Hsia
, and
M. F.
Erden
,
Proc. IEEE
96
,
1810
(
2008
).
12.
W. A.
Challener
,
C.
Peng
,
A. V.
Itagi
,
D.
Karns
,
W.
Peng
,
Y.
Peng
,
X.
Yang
,
X.
Zhu
,
N. J.
Gokemeijer
,
Y.-T.
Hsia
,
G.
Ju
,
R. E.
Rottmayer
,
M. A.
Seigler
, and
E. C.
Gage
,
Nature Photon.
3
,
220
(
2009
).
13.
B. C.
Stipe
,
T. C.
Strand
,
C. C.
Poon
,
H.
Balamane
,
T. D.
Boone
,
J. A.
Katine
,
J.-L.
Li
,
V.
Rawat
,
H.
Nemoto
,
A.
Hirotsune
,
O.
Hellwig
,
R.
Ruiz
,
E.
Dobisz
,
D. S.
Kercher
,
N.
Robertson
,
T. R.
Albrecht
, and
B. D.
Terris
,
Nature Photon.
4
,
484
(
2010
).
14.
N.
Wang
and
K.
Komvopoulos
,
IEEE Trans. Magn.
47
,
2277
(
2011
).
15.
Q.
Ding
,
L.
Wang
,
L.
Hu
,
T.
Hu
,
Y.
Wang
, and
Y.
Zhang
,
J. Appl. Phys.
109
,
013501
(
2011
).
16.
V.
Kulikovsky
,
V.
Vorlíček
,
P.
Boháč
,
A.
Kurdyumov
,
A.
Deyneka
, and
L.
Jastrabík
,
Diamond Relat. Mater.
12
,
1378
(
2003
).
17.
S.
Takabayashi
,
K.
Okamoto
,
H.
Sakaue
,
T.
Takahagi
,
K.
Shimada
, and
T.
Nakatani
,
J. Appl. Phys.
104
,
043512
(
2008
).
18.
D. S.
Grierson
,
A. V.
Sumant
,
A. R.
Konicek
,
T. A.
Friedmann
,
J. P.
Sullivan
, and
R. W.
Carpick
,
J. Appl. Phys.
107
,
033523
(
2010
).
19.
Z. L.
Akkerman
,
H.
Efstathiadis
, and
F. W.
Smith
,
J. Appl. Phys.
80
,
3068
(
1996
).
20.
A.
Grill
,
V.
Patel
, and
B. S.
Meyerson
,
J. Mater. Res.
5
,
2531
(
1990
).
21.
A. C.
Ferrari
,
B.
Kleinsorge
,
N. A.
Morrison
,
A.
Hart
,
V.
Stolojan
, and
J.
Robertson
,
J. Appl. Phys.
85
,
7191
(
1999
).
22.
J.
Díaz
,
G.
Paolicelli
,
S.
Ferrer
, and
F.
Comin
,
Phys. Rev. B
54
,
8064
(
1996
).
23.
S.
Anders
,
J.
Díaz
,
J. W.
Ager
 III
,
R. Y.
Lo
, and
D. B.
Bogy
,
Appl. Phys. Lett.
71
,
3367
(
1997
).
24.
M.
Chhowalla
,
A. C.
Ferrari
,
J.
Robertson
, and
G. A. J.
Amaratunga
,
Appl. Phys. Lett.
76
,
1419
(
2000
).
25.
N. M. J.
Conway
,
A.
Ilie
,
J.
Robertson
,
W. I.
Milne
, and
A.
Tagliaferro
,
Appl. Phys. Lett.
73
,
2456
(
1998
).
26.
D.
Wesner
,
S.
Krummacher
,
R.
Carr
,
T. K.
Sham
,
M.
Strongin
,
W.
Eberhardt
,
S. L.
Weng
,
G.
Williams
,
M.
Howells
,
F.
Kampas
,
S.
Heald
, and
F. W.
Smith
,
Phys. Rev. B
28
,
2152
(
1983
).
27.
B.
Schroeder
and
G. A.
Gibson
,
ACM Trans. Storage
3
, Article No. 8 (
2007
).
28.
Y.
Ma
,
X.
Chen
, and
B.
Liu
,
Tribol. Lett.
47
,
175
(
2012
).
29.
D.
Wan
and
K.
Komvopoulos
,
J. Phys. Chem. C
111
,
9891
(
2007
).
30.
M.
Wormington
,
C.
Panaccione
,
K. M.
Matney
, and
D. K.
Bowen
,
Philos. Trans. R. Soc. London, Ser. A
357
,
2827
(
1999
).
31.
L. G.
Parratt
,
Phys. Rev.
95
,
359
(
1954
).
32.
L.
Névot
and
P.
Croce
,
Rev. Phys. Appl.
15
,
761
(
1980
).
33.
M.
Alam
and
Q.
Sun
,
J. Mater. Res.
8
,
2870
(
1993
).
34.
A. C.
Ferrari
and
J.
Robertson
,
Philos. Trans. R. Soc. London, Ser. A
362
,
2477
(
2004
).
35.
A. C.
Ferrari
and
J.
Robertson
,
Phys. Rev. B
61
,
14095
(
2000
).
36.
A. C.
Ferrari
,
S. E.
Rodil
, and
J.
Robertson
,
Phys. Rev. B
67
,
155306
(
2003
).
37.
J. O.
Orwa
,
I.
Andrienko
,
J. L.
Peng
,
S.
Prawer
,
Y. B.
Zhang
, and
S. P.
Lau
,
J. Appl. Phys.
96
,
6286
(
2004
).
38.
D. S.
Knight
and
W. B.
White
,
J. Mater. Res.
4
,
385
(
1989
).
39.
B.
Bhushan
,
Diamond Relat. Mater.
8
,
1985
(
1999
).
40.
D.
Liu
and
G.
Benstetter
,
Appl. Surf. Sci.
249
,
315
(
2005
).
You do not currently have access to this content.