Based on the particle swarm optimization algorithm on crystal structural prediction, we first predict that TaN undergoes a phase transition from the experimental θ-TaN to a hexagonal P63/mmc structure at 87.5 GPa with volume drop of 1.6%. This hexagonal P63/mmc structure is isostructural with anti-NiAs and can be quenchable to ambient pressure by further phonon dispersions calculations. The Young's modulus E and shear modulus G as a function of crystal orientation for TaN have thus been systematically investigated. The calculated mechanical properties suggest that the P63/mmc-TaN is ultra-incompressible and hard due to its high bulk modulus (336 GPa), large shear modulus (214 GPa), originating from a staking of “N-Ta-N” sandwiches layers linked by strong covalent Ta-N bonding.

1.
L. E.
Toth
,
Transition Metal Carbides and Nitrides
(
Academic
,
New York
,
1974
).
2.
S. T.
Oyama
,
The Chemistry of Transition Metal Carbides and Nitrides
(
Black Academic and Professional
,
London
,
1996
).
3.
I.
Pollini
,
A.
Mosser
, and
C.
Parlebas
,
Phys. Rep.
355
,
1
(
2001
).
4.
C. S.
Shin
,
D.
Gall
,
P.
Desjardins
,
A.
Vailionis
,
H.
Kim
,
I.
Petrov
,
J. E.
Greene
, and
M.
Odén
,
Appl. Phys. Lett.
75
,
3808
(
1999
).
5.
T.
Oku
,
E.
Kawakami
,
M.
Uekubo
,
K.
Takahiro
,
S.
Yam-aguchi
, and
M.
Murakami
,
Appl. Surf. Sci.
99
,
265
(
1996
).
6.
B.
Du
and
I. I.
Suni
,
Electrochem. Solid-State Lett.
8
,
G283
(
2005
).
7.
O. Yu.
Zhizhun
,
Ya. V.
Zaulichny
, and
E. A.
Zhurakovskii
,
Powder Metall. Met. Ceram.
37
,
425
(
1998
).
8.
E. J.
Zhao
,
B.
Hong
,
J.
Meng
, and
Z. J.
Wu
,
J. Comput. Chem.
30
,
2358
(
2009
).
9.
T. E.
Kim
,
S.
Han
,
W. J.
Son
,
E.
Cho
,
H. S.
Ahn
, and
S.
Shin
,
Comput. Mater. Sci.
44
,
577
(
2008
).
10.
F. Z.
Ren
and
Y. X.
Wang
,
Thin Solid Films
519
,
3954
(
2011
).
11.
J.
Chang
,
G. P.
Zhao
,
X. L.
Zhou
,
K.
Liu
, and
L. Y.
Lu
,
J. Appl. Phys.
112
,
083519
(
2012
).
12.
Y. C.
Wang
,
J.
Lv
,
L.
Zhu
, and
Y. M.
Ma
,
Phys. Rev. B
82
,
094116
(
2010
).
13.
Y. C.
Wang
,
J.
Lv
,
L.
Zhu
, and
Y. M.
Ma
,
Comput. Phys. Commun.
183
,
2063
(
2012
).
14.
H.
Wang
,
J. S.
Tse
,
K.
Tanaka
,
T.
Iitaka
, and
Y. M.
Ma
,
Proc. Natl. Acad. Sci. U.S.A.
109
,
6463
(
2012
).
15.
L.
Zhu
,
Z. W.
Wang
,
Y. C.
Wang
,
G. T.
Zou
,
H. K.
Mao
, and
Y. M.
Ma
,
Proc. Natl. Acad. Sci. U.S.A.
109
,
751
(
2012
).
16.
Y. C.
Wang
,
H. Y.
Liu
,
J.
Lv
,
L.
Zhu
,
H.
Wang
, and
Y. M.
Ma
,
Nat. Commun.
2
,
563
(
2011
).
17.
J.
Lv
,
Y. C.
Wang
,
L.
Zhu
, and
Y. M.
Ma
,
Phys. Rev. Lett.
106
,
015503
(
2011
).
18.
L.
Zhu
,
H.
Wang
,
Y. C.
Wang
,
J.
Lv
,
Y. M.
Ma
,
Q. L.
Cui
,
Y. M.
Ma
, and
G. T.
Zou
,
Phys. Rev. Lett.
106
,
145501
(
2011
).
19.
D.
Nishio-Hamane
,
M. G.
Zhang
,
T.
Yagi
, and
Y. M.
Ma
,
Am. Mineral.
97
,
568
(
2012
).
20.
C. L.
Guillaume
,
E.
Gregoryanz
,
O.
Degtyareva
,
M. I.
McMahon
,
M.
Hanfland
,
S.
Evans
,
M.
Guthrie
,
S. V.
Sinogeikin
, and
H. K.
Mao
,
Nat. Phys.
7
,
211
(
2011
).
21.
Y. M.
Ma
,
Y. C.
Wang
,
J.
Lv
, and
L.
Zhu
, CALYPSO, version 1.3, 2012, see http://www.calypso.cn/.
22.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
23.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
24.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
25.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
26.
J. D.
Pack
and
H. J.
Monkhorst
,
Phys. Rev. B
16
,
1748
(
1977
).
27.
A.
Togo
,
F.
Oba
, and
I.
Tanaka
,
Phys. Rev. B
78
,
134106
(
2008
).
28.
R.
Hill
,
Proc. Phys. Soc., London, Sect. A
65
,
349
(
1952
).
29.
A.
Šimůnek
,
Phys. Rev. B
75
,
172108
(
2007
).
31.
A. N.
Christensen
and
B.
Lebech
,
Acta Crystallogr. B
34
,
261
(
1978
).
32.
G.
Brauer
,
A.
Skokan
,
A.
Neuhaus
, and
E.
Mohr
,
Monatsch. Chem.
103
,
794
(
1972
).
33.
T.
Mashimo
,
S.
Tashiro
,
M.
Nishida
,
K.
Miyahara
, and
E.
Eto
,
Physica B
239
,
13
(
1997
).
34.
H.
Wang
,
Q.
Li
,
Y. W.
Li
,
Y.
Xu
,
T.
Cui
,
A. R.
Oganov
, and
Y. M.
Ma
,
Phys. Rev. B
79
,
132109
(
2009
).
35.
X. F.
Li
and
Z. L.
Liu
,
J. At. Mol. Sci.
3
,
78
(
2012
).
36.
M. B.
Kanoun
,
S.
Goumri-Said
, and
M.
Jaouen
,
Phys. Rev. B
76
,
134109
(
2007
).
37.
M.
Born
,
Proc. Cambridge Philos. Soc.
36
,
160
(
1940
).
38.
D. B.
Sirdeshmukh
,
L.
Sirdeshmukh
, and
K. G.
Subhadra
,
Atomistic Properties of Solids
(
Springer
,
Berlin
,
2011
).
39.
A.
Cazzani
and
M.
Rovati
,
Int. J. Solids Struct.
40
,
1713
(
2003
).
40.
F.
Chu
,
M.
Lei
,
S. A.
Maloy
,
J. J.
Petrovic
, and
T. E.
Mitchell
,
Acta. Mater.
44
,
3035
(
1996
).
41.
M. R.
Koehler
,
V.
Keppens
,
B. C.
Sales
,
R. Y.
Jin
, and
D.
Mandrus
,
J. Phys.D: Appl. Phys.
42
,
095414
(
2009
).
42.
V. V.
Brazhkin
,
A. G.
Lyapin
, and
R. J.
Hemley
,
Philos. Mag. A
82
,
231
(
2002
).
43.
P.
Ravindran
,
L.
Fast
,
P. A.
Korzhavyi
,
B.
Johansson
,
J.
Wills
, and
O.
Eriksson
,
J. Appl. Phys.
84
,
4891
(
1998
).
44.
E.
Schreiber
,
O. L.
Anderson
, and
N.
Soga
,
Elastic Constants and Their Measurements
(
McGraw-Hill
,
New York
,
1973
).
45.
S. C.
Abrahams
and
F. S. L.
Hsu
,
J. Chem. Phys.
63
,
1162
(
1975
).
46.
P.
Vajeeston
,
P.
Ravindran
,
C.
Ravi
, and
R.
Asokamani
,
Phys. Rev. B
63
,
045115
(
2001
).
You do not currently have access to this content.