The reflection and transmission of Lamb waves at an imperfect joint of plates are analyzed numerically by the modal decomposition method and the hybrid finite element method. The joint is modeled as a spring-type interface characterized by distributed normal and tangential stiffnesses. The analysis is focused on a low-frequency range where the lowest-order symmetric and antisymmetric Lamb waves are the only propagating modes. The frequency-dependent reflection and transmission characteristics of these Lamb modes are computed for different interfacial stiffnesses, together with the generation behavior of localized, non-propagating higher-order Lamb modes. As a result, S0-mode Lamb wave is shown to exhibit the reflection and transmission characteristics which are monotonically frequency-dependent. On the other hand, A0-mode Lamb wave shows complicated and non-monotonic frequency dependence in the reflection and transmission characteristics. The obtained Lamb wave characteristics are discussed in the light of approximate one-dimensional models constructed based on classical plate theories. As a result, the reflection and transmission coefficients of S0-mode Lamb wave are accurately reproduced by a simple model of longitudinal wave in thin plates, while those of A0-mode Lamb wave are well described by the Mindlin plate model of flexural wave. It is also shown that stiffness reduction at the corners of the contacting edges of plates has only minor influence on the reflection and transmission characteristics.

1.
R.
Clark
,
W. D.
Dover
, and
L. J.
Bond
,
NDT Int.
20
,
269
275
(
1987
).
2.
K.
Kendall
and
D.
Tabor
,
Proc. R. Soc. London, Ser. A
323
,
321
340
(
1971
).
3.
J.-M.
Baik
and
R. B.
Thompson
,
J. Nondestruct. Eval.
4
,
177
196
(
1984
).
4.
B. W.
Drinkwater
,
R. S.
Dwyer-Joyce
, and
P.
Cawley
,
Proc. R. Soc. London, Ser. A
452
,
2613
2628
(
1996
).
5.
C.
Pecorari
,
J. Acoust. Soc. Am.
113
,
3065
3072
(
2003
).
6.
S.
Biwa
,
S.
Nakajima
, and
N.
Ohno
,
Trans. ASME, J. Appl. Mech.
71
,
508
515
(
2004
).
7.
J.-Y.
Kim
and
J.-S.
Lee
,
J. Appl. Phys.
101
,
043501
(
2007
).
8.
M. V.
Golub
and
A.
Bostrom
,
Wave Motion
48
,
105
115
(
2011
).
9.
S. I.
Rokhlin
and
Y. J.
Wang
,
J. Acoust. Soc. Am.
89
,
503
515
(
1991
).
10.
Y.
Lu
and
J. D.
Achenbach
,
J. Acoust. Soc. Am.
90
,
2576
2585
(
1991
).
11.
Y.
Ishii
and
S.
Biwa
,
J. Appl. Phys.
111
,
084907
(
2012
).
12.
J. P.
Jones
and
J. S.
Whittier
,
Trans. ASME, J. Appl. Mech.
34
,
905
909
(
1967
).
13.
B.
Gu
,
K. T.
Nihei
,
L. R.
Myer
, and
L. J.
Pyrak-Nolte
,
J. Geophys. Res.
101
,
827
835
, doi: (
1996
).
14.
S. I.
Rokhlin
,
M.
Hefets
, and
M.
Rosen
,
J. Appl. Phys.
52
,
2847
2851
(
1981
).
15.
T.
Valier-Brasier
,
T.
Dehoux
, and
B.
Audoin
,
J. Appl. Phys.
112
,
024904
(
2012
).
16.
B. W.
Drinkwater
,
M.
Castaings
and
B.
Hosten
,
J. Acoust. Soc. Am.
113
,
3161
3170
(
2003
).
17.
B.
Hosten
and
M.
Castaings
,
J. Acoust. Soc. Am.
117
,
1108
1113
(
2005
).
18.
Z. L.
Li
and
J. D.
Achenbach
,
Trans. ASME, J. Appl. Mech.
58
,
688
694
(
1991
).
19.
C.
Pecorari
,
Wave Motion
33
,
259
270
(
2001
).
20.
B. C.
Lee
and
W. J.
Staszewski
,
IOP Conf. Ser.: Mater. Sci. Eng.
10
,
012059
(
2010
).
21.
H.
Cho
and
C. J.
Lissenden
,
Struct. Health Monit.
11
,
393
404
(
2012
).
22.
P. J.
Torvik
,
J. Acoust. Soc. Am.
41
,
346
353
(
1967
).
23.
R. D.
Gregory
and
I.
Gladwell
,
J. Elast.
13
,
185
206
(
1983
).
24.
Y.
Cho
and
J. L.
Rose
,
J. Acoust. Soc. Am.
99
,
2097
2109
(
1996
).
25.
E.
Le Clezio
,
M. V.
Predoi
,
M.
Castaings
,
B.
Hosten
, and
M.
Rousseau
,
Ultrasonics
41
,
25
40
(
2003
).
26.
D. N.
Alleyne
and
P.
Cawley
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
39
,
381
397
(
1992
).
27.
Y.
Cho
,
D. D.
Hongerholt
, and
J. L.
Rose
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
44
,
44
52
(
1997
).
28.
M. J. S.
Lowe
and
O.
Diligent
,
J. Acoust. Soc. Am.
111
,
64
74
(
2002
).
29.
M. J. S.
Lowe
,
P.
Cawley
,
J.-Y.
Kao
, and
O.
Diligent
,
J. Acoust. Soc. Am.
112
,
2612
2622
(
2002
).
30.
M.
Castaings
,
E.
Le Crezio
, and
B.
Hosten
,
J. Acoust. Soc. Am.
112
,
2567
2582
(
2002
).
31.
A.
Gunawan
and
S.
Hirose
,
J. Acoust. Soc. Am.
115
,
996
1005
(
2004
).
32.
M. A.
Flores-López
and
R. D.
Gregory
,
J. Acoust. Soc. Am.
119
,
2041
2049
(
2006
).
33.
B.
Kim
and
Y.
Roh
,
Jpn. J. Appl. Phys., Part 1
48
,
07GD04
(
2009
).
34.
A. R.
Clough
and
R. S.
Edwards
,
J. Appl. Phys.
111
,
104906
(
2012
).
35.
Y. N.
Al-Nassar
,
S. K.
Datta
, and
A. H.
Shah
,
Ultrasonics
29
,
125
132
(
1991
).
36.
M. V.
Predoi
and
M.
Rousseau
,
Ultrasonics
43
,
551
559
(
2005
).
37.
M.
Koshiba
,
S.
Karakida
, and
M.
Suzuki
,
IEEE Trans. Sonics Ultrason.
31
,
18
25
(
1984
).
38.
K. F.
Graff
,
Wave Motion in Elastic Solids
(
Oxford University Press
,
London
,
1975
).
39.
J. L.
Rose
,
Ultrasonic Waves in Solid Media
(
Cambridge University Press
,
Cambridge
,
1999
).
40.
H.
Kolsky
,
Stress Waves in Solids
(
Dover
,
New York
,
1963
).
41.
R. D.
Mindlin
,
Trans. ASME, J. Appl. Mech.
18
,
31
38
(
1951
).
42.
B.
Zhang
,
T. P.
Waters
, and
B. R.
Mace
, in
Proceedings of the 2006 SEM Annual Conference and Exposition on Experimental and Applied Mechanics 2006
(Society for Experimental Mechanics, Inc.,
2006
), Vol.
3
, pp.
1409
1416
.
You do not currently have access to this content.