The extraordinary magnetoresistance (EMR) in metal-semiconductor hybrid structures was first demonstrated using a van der Pauw configuration for a circular semiconductor wafer with a concentric metallic inclusion in it. This effect depends on the orbital motion of carriers in an external magnetic field, and the remarkably high magnetoresistance response observed suggests that the geometry of the metallic inclusion can be optimized to further significantly enhance the EMR. Here, we consider the theory and simulations to achieve this goal by comparing both two-dimensional (2D) and three-dimensional (3D) structures in an external magnetic field to evaluate the EMR in them. New results for 3D structures are presented to show the feasibility of such modeling. Examples of structures that are compatible with present day technological capabilities are given together with their expected responses in terms of EMR. For a 10 μm 2D square structure with a square metallic inclusion, we find an MR up to 107 percent for an applied magnetic field of 1 T. In 3D, for a 10 μm cube with a 5 μm centered metallic inclusion, we obtain an MR of 104 percent, which is comparable with the 2D structure of equivalent dimensions. The results presented here for specific geometries are scalable to smaller dimensions down to the onset of ballistic effects in the transport. The present calculations open up the possibility of 3D magnetic field sensors capable of determining the magnitude and also direction of the magnetic field once a full characterization of the sensor response is performed.

1.
S. A.
Solin
,
T.
Thio
,
D. R.
Hines
, and
J. J.
Heremans
, “
Enhanced room-temperature geometric magnetoresistance in inhomogeneous narrow-gap semiconductors
,”
Science
289
,
1530
1532
(
2000
).
2.
S. A.
Solin
,
T.
Thio
,
D. R.
Hines
,
J. J.
Heremans
, and
T.
Zhou
, in
Proceedings of the 25th International Conference on the Physics of Semiconductors, Osaka, Japan
, edited by
N.
Miura
(
Springer
,
Berlin
,
2001
), pp.
1771
1774
.
3.
T.
Zhou
,
D. R.
Hines
, and
S. A.
Solin
, “
Extraordinary magnetoresistance in externally shunted van der Pauw plates
,”
Appl. Phys. Lett.
78
,
667
669
(
2001
).
4.
A. C. H.
Rowe
,
K.
Fasanella
,
T.
Zhou
,
D. R.
Hines
, and
S. A.
Solin
, “
A uniaxial tensile stress apparatus for temperature-dependent magnetotransport and optical studies of thin films
,”
Rev. Sci. Instrum.
73
,
4270
4276
(
2002
).
5.
A. C. H.
Rowe
,
D. R.
Hines
, and
S. A.
Solin
, “
Enhanced room-temperature piezoconductance of metalsemiconductor hybrid structures
,”
Appl. Phys. Lett.
83
,
1160
1162
(
2003
).
6.
A. C. H.
Rowe
and
S. A.
Solin
, “
Importance of interface sampling for extraordinary resistance effects in metal semiconductor hybrids
,”
Phys. Rev. B
71
,
235323
1
(
2005
).
7.
A. C. H.
Rowe
,
A.
Donoso-Barrera
,
Ch.
Renner
, and
S.
Arscott
, “
Giant room-temperature piezoresistance in a metal-silicon hybrid structure
,”
Phys. Rev. Lett.
100
,
145501
1
(
2008
).
8.
K.
Wieland
,
Y.
Wang
,
L. R.
Ram-Mohan
,
S. A.
Solin
, and
A. M.
Girgis
, “
Extraordinary optoconductance in semiconductor-metal hybrid structures
,”
Appl. Phys. Lett.
88
,
052105
052108
(
2006
).
9.
K.
Wieland
,
Y.
Wang
,
S. A.
Solin
,
A. M.
Girgis
, and
L. R.
Ram-Mohan
, “
Experimental measurement and finite element modeling of extraordinary optoconductance in GaAs-In metal-semiconductor hybrid structures
,”
Phys. Rev. B
73
,
155305
155312
(
2006
).
10.
K. A.
Wieland
,
Y.
Wang
,
S. A.
Solin
,
A. M.
Girgis
, and
L. R.
Ram Mohan
, “
Extraordinary optoconductance in In-GaAs and In-InSb metal-semiconductor hybrid structures
,”
AIP Conf. Proc.
893
,
1465
(
2007
).
11.
Y.
Wang
,
A. K. M.
Newaz
,
J.
Wu
,
S. A.
Solin
,
V. R.
Kavasseri
,
N.
Jin
,
I. S.
Ahmed
, and
I.
Adesida
, “
Extraordinary electroconductance in metal-semiconductor hybrid structures
,”
Appl. Phys. Lett.
92
,
262106
1
(
2008
).
12.
J.
Moussa
,
L. R.
Ram-Mohan
,
J.
Sullivan
,
T.
Zhou
,
D. R.
Hines
, and
S. A.
Solin
, “
Finite-element modeling of extraordinary magnetoresistance in thin film semiconductors with metallic inclusions
,”
Phys. Rev. B
64
,
184410
1
(
2001
).
13.
R. S.
Popovic
,
Hall Effect Devices
(
Adam Hilger
,
Bristol
,
1991
).
14.
S.
Solin
,
D. R.
Hines
,
A. C. H.
Rowe
,
J. S.
Tsai
,
Y. A.
Pashkin
,
S. J.
Chung
,
N.
Goel
, and
M. B.
Santos
, “
Nonmagnetic semiconductors as read-head sensors for ultra-high-density magnetic recording
,”
Appl. Phys. Lett.
80
,
4012
4014
(
2002
).
15.
J.
Moussa
,
L. R.
Ram-Mohan
,
A. C. H.
Rowe
, and
S. A.
Solin
, “
Response of an extraordinary magnetoresistance read head to a magnetic bit
,”
J. Appl. Phys.
94
,
1110
(
2003
).
17.
S. A.
Solin
and
L. R.
Ram-Mohan
, “
Geometry-driven magnetoresistance
,” in
Handbook of Magnetism and Advanced Magnetic Materials, Volume 5: Spintronics and Magnetoelectronics
, edited by
H.
Kronmüller
and
S.
Parkin
(
John Wiley & Sons
,
NY
,
2007
), pp.
1
21
.
18.
M.
Hoener
,
O.
Kronenwerth
,
C.
Heyn
,
D.
Grundler
, and
M.
Holz
, “
Geometry enhanced MR of narrow Au/InAs structures incorporating a two-D electron system
,”
J. Appl. Phys.
99
,
036102
1
(
2006
).
19.
M.
Holz
,
O.
Kronenwerth
, and
D.
Grundler
, “
Optimization of semiconductor metal hybrid structures for application in magnetic-field sensors and read heads
,”
Appl. Phys. Lett.
83
,
3344
3346
(
2003
).
20.
M.
Holz
,
O.
Kronenwerth
, and
D.
Grundler
, “
Magnetoresistance of semiconductor-metal hybrid structures: The effects of material parameters and contact resistance
,”
Phys. Rev. B
67
,
195312
1
(
2003
).
21.
M.
Holz
,
O.
Kronenwerth
, and
D.
Grundler
, “
Enhanced sensitivity due to current redistribution in the Hall effect of semiconductor-metal hybrid structures
,”
Appl. Phys. Lett.
86
,
072513
1
(
2005
).
22.
T. H.
Hewett
and
F. V.
Kusmartsev
, “
Geometrically enhanced extraordinary magnetoresistance in semiconductor-metal hybrids
,”
Phys. Rev. B
82
,
212404
1
(
2010
).
23.
S. A.
Bulgadaev
and
F. V.
Kusmartsev
, “
Large linear magnetoresistivity in strongly inhomogeneous planar and layered systems
,”
Phys. Lett. A
342
,
188
195
(
2005
).
24.
J.
Suh
,
W.
Kim
,
J.
Chang
,
S. H.
Han
, and
E. K.
Kim
, “
Magnetoresistance of a polycrystalline InSb disk with an embedded Au core
,”
J. Korean Phys. Soc.
55
,
577
580
(
2009
).
25.
L. R.
Ram-Mohan
,
Finite Element and Boundary Element Applications to Quantum Mechanics
(
Oxford University Press
,
Oxford
,
2002
).
26.
O. C.
Zienkiewicz
and
R. L.
Taylor
,
The Finite Element Method
, 4th ed. (
McGraw-Hill
,
New York
,
1994
);
T. J. R.
Hughes
,
The Finite Element Method
(
Prentice-Hall, Englewood Cliffs
,
NJ
,
1987
).
27.
R.
Courant
and
D.
Hilbert
,
Methods of Mathematical Physics
(
Interscience
,
New York
,
1953
).
You do not currently have access to this content.