Broadband light absorption enhancement is numerically investigated for the active light harvesting layer of an organic photovoltaic (OPV), which consists of a blend of poly(3-hexylthiophene) (P3HT) and the fullerene derivative [6,6]-phenyl-C61 butyric acid methyl ester (PCBM). Periodic plasmonic nanostructures placed above and below the active layer incorporate Ag, Al, Au, or a combination of two different metals. Three dimensional (3D) full-field electromagnetic simulations are applied to determine the effect of varying the metal employed in the plasmonic nanostructures on the absorption enhancement of the OPV. In addition, the geometric parameters (e.g., film thickness, period, and diameter) of the symmetrically distributed top and bottom metal (Ag, Al, or Au) nanostructures were varied to optimize the device structure and delineate the mechanism(s) leading to the absorption enhancement. A spectrally broadband, polarization-insensitive, and wide-angle absorption enhancement is obtained using a double plasmonic nanostructure and is attributed to the combined excitation of localized and single-interface surface plasmon polariton modes. The total photon absorption of the OPV with the optimized double plasmonic Ag nanostructures was found to be enhanced by as much as 82.8% and 80.4% under normal (0°) and 60° light incidence, respectively.

1.
M. A.
Green
, “
Third generation photovoltaics: Solar cells for 2020 and beyond
,”
Physica E
14
,
65
(
2002
).
2.
M. A.
Green
, “
Recent developments in photovoltaics
,”
Sol. Energy
76
,
3
(
2004
).
3.
G. J.
Bauhuis
,
P.
Mulder
,
E. J.
Haverkamp
,
J. C. C. M.
Huijben
, and
J. J.
Schermer
, “
26.1% thin-film GaAs solar cell using epitaxial lift-off
,”
Sol. Energy Mater. Sol. Cells
93
,
1488
(
2009
).
4.
A.
Romeo
,
A.
Terheggen
,
D.
Abou-Ras
,
D. L.
Bätzner
,
F.-J.
Haug
,
M.
Kälin
,
D.
Rudmann
, and
A. N.
Tiwari
, “
Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells
,”
Prog. Photovoltaics
12
,
93
(
2004
).
5.
P.
Peumans
,
S.
Uchida
, and
S. R.
Forrest
, “
Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films
,”
Nature
425
,
158
(
2003
).
6.
G.
Li
,
V.
Shrotriya
,
J.
Huang
,
Y.
Yao
,
T.
Moriarty
,
K.
Emery
, and
Y.
Yang
, “
High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends
,”
Nature Mater.
4
,
864
(
2005
).
7.
J. Y.
Kim
,
K.
Lee
,
N. E.
Coates
,
D.
Moses
,
T.-Q.
Nguyen
,
M.
Dante
, and
A. J.
Heeger
, “
Efficient tandem polymer solar cells fabricated by all-solution processing
,”
Science
317
,
222
(
2007
).
8.
C. W.
Tang
, “
Two-layer organic photovoltaic cell
,”
Appl. Phys. Lett.
48
,
183
(
1986
).
9.
H.-Y.
Chen
,
J.
Hou
,
S.
Zhang
,
Y.
Liang
,
G.
Yang
,
Y.
Yang
,
L.
Yu
,
Y.
Wu
, and
G.
Li
, “
Polymer solar cells with enhanced open-circuit voltage and efficiency
,”
Nat. Photonics
3
,
649
(
2009
).
10.
C. E.
Small
,
S.
Chen
,
J.
Subbiah
,
C. M.
Amb
,
S.-W.
Tsang
,
T.-H.
Lai
,
J. R.
Reynolds
, and
F.
So
, “
High-efficiency inverted dithienogermole–thienopyrrolodione-based polymer solar cells
,”
Nat. Photonics
6
,
115
(
2012
).
11.
Y.
Sun
,
G. C.
Welch
,
W. L.
Leong
,
C. J.
Takacs
,
G. C.
Bazan
, and
A. J.
Heeger
, “
Solution-processed small-molecule solar cells with 6.7% efficiency
,”
Nature Mater.
11
,
44
(
2012
).
12.
C.
Wu
, “
Thinking small for solar
,”
MRS Bull.
37
,
194
(
2012
).
13.
P. E.
Shaw
,
A.
Ruseckas
,
I. D. W.
Samuel
, “
Exciton diffusion measurements in poly(3-hexylthiophene)
,”
Adv. Mater.
20
,
3516
(
2008
).
14.
S.
Sista
,
M.-H.
Park
,
Z.
Hong
,
Y.
Wu
,
J.
Hou
,
W. L.
Kwan
,
G.
Li
, and
Y.
Yang
, “
Highly efficient tandem polymer photovoltaic cells
,”
Adv. Mater.
22
,
380
(
2010
).
15.
S. H.
Park
,
A.
Roy
,
S.
Beaupre
,
S.
Cho
,
N.
Coates
,
J. S.
Moon
,
D.
Moses
,
M.
Leclerc
,
K.
Lee
, and
A. J.
Heeger
, “
Bulk heterojunction solar cells with internal quantum efficiency approaching 100%
,”
Nat. Photonics
3
,
297
(
2009
).
16.
M.-H.
Chen
,
J.
Hou
,
Z.
Hong
,
G.
Yang
,
S.
Sista
,
L.-M.
Chen
, and
Y.
Yang
, “
Efficient polymer solar cells with thin active layers based on alternating polyfluorene copolymer/fullerene bulk heterojunctions
,”
Adv. Mater.
21
,
4238
(
2009
).
17.
S.-B.
Rim
,
S.
Zhao
,
S. R.
Scully
,
M. D.
McGehee
, and
P.
Peumans
, “
An effective light trapping configuration for thin-film solar cells
”,
Appl. Phys. Lett.
91
,
243501
(
2007
).
18.
C.
Cocoyer
,
L.
Rocha
,
L.
Sicot
,
B.
Geffroy
,
R.
de Bettignies
,
C.
Sentein
,
C.
Fiorini-Debuisschert
, and
P.
Raimond
, “
Implementation of submicrometric periodic surface structures toward improvement of organic-solar-cell performances
,”
Appl. Phys. Lett.
88
,
133108
(
2006
).
19.
D.-H.
Ko
,
J. R.
Tumbleston
,
L.
Zhang
,
S.
Williams
,
J. M.
DeSimone
,
R.
Lopez
, and
E. T.
Samulski
, “
Photonic crystal geometry for organic solar cells
,”
Nano Lett.
9
,
2742
(
2009
).
20.
F.
Chen
,
J.
Wu
,
C.
Lee
,
Y.
Hong
,
C.
Kuo
, and
M. H.
Huang
, “
Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles
,”
Appl. Phys. Lett.
95
,
013305
(
2009
).
21.
J.
Wu
,
F.
Chen
,
Y.
Hsiao
,
F.
Chien
,
P.
Chen
,
C.
Kuo
,
M.
Huang
, and
C.
Hsu
, “
Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells
,”
ACS Nano
5
,
959
(
2011
).
22.
H.
Shen
,
P.
Bienstman
, and
B.
Maes
, “
Plasmonic absorption enhancement in organic solar cells with thin active layers
,”
J. Appl. Phys.
106
,
073109
(
2009
).
23.
W.
Sha
,
W.
Choy
,
Y.
Liu
, and
W.
Chew
, “
Near-field multiple scattering effects of plasmonic nanospheres embedded into thin-film organic solar cells
,”
Appl. Phys. Lett.
99
,
113304
(
2011
).
24.
A. E.
Ostfeld
and
D.
Pacifici
, “
Plasmonic concentrators for enhanced light absorption in ultrathin film organic photovoltaics
,”
Appl. Phys. Lett.
98
,
113112
(
2011
).
25.
W.
Bai
,
Q.
Gan
,
G.
Song
,
L.
Chen
,
Z.
Kafafi
, and
F.
Bartoli
, “
Broadband short-range surface plasmon structures for absorption enhancement in organic photovoltaics
,”
Opt. Express
18
,
A620
(
2010
).
26.
W.
Bai
,
Q.
Gan
,
G.
Song
,
L.
Chen
,
Z.
Kafafi
, and
F.
Bartoli
, “
Double plasmonic structure design for broadband absorption enhancement in molecular organic solar cells
,”
J. Photon. Energy
1
,
011121
(
2011
).
27.
M. A.
Sefunc
,
A. K.
Okyay
, and
H. V.
Demir
, “
Volumetric plasmonic resonator architechture for thin film solar cells
,”
Appl. Phys. Lett.
98
,
093117
(
2011
).
28.
W.
Sha
,
W.
Choy
, and
W.
Chew
, “
Angular response of thin-film organic solar cells with periodic metal back nanostrips
,”
Opt. Lett.
36
,
478
(
2011
).
29.
C.
Min
,
J.
Li
,
G.
Veronis
,
J.
Lee
,
S.
Fan
, and
P.
Peumans
, “
Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings
,”
Appl. Phys. Lett.
96
,
133302
(
2010
).
30.
M. A.
Sefunc
,
A. K.
Okyay
, and
H. V.
Demir
, “
Plasmonic backcontact grating for P3HT:PCBM organic solar cells enabling strong optical absorption increased in all polarizations
,”
Opt. Express
19
,
14200
(
2011
).
31.
M.
Kang
,
T.
Xu
,
H.
Park
,
X.
Luo
, and
L.
Guo
, “
Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes
,”
Adv. Mater.
22
,
4378
(
2010
).
32.
K.
Tvingstedt
,
N.
Persson
,
O.
Inganäs
,
A.
Rahachou
, and
I. V.
Zozoulenko
, “
Surface plasmon increase absorption in polymer photovoltaic cells
,”
Appl. Phys. Lett.
91
,
113514
(
2007
).
33.
H. A.
Atwater
and
A.
Polman
, “
Plasmonics for improved photovoltaic devices
,”
Nature Mater.
9
,
205
(
2010
).
34.
W.
Bai
,
Q.
Gan
,
F.
Bartoli
,
J.
Zhang
,
L.
Cai
,
Y.
Huang
, and
G.
Song
, “
Design of plasmonic back structures for efficiency enhancement of thin-film amorphous Si solar cells
,”
Opt. Lett.
34
,
3725
(
2009
).
35.
J. N.
Munday
and
H. A.
Atwater
, “
Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings
,”
Nano Lett.
11
,
2195
(
2011
).
36.
R. A.
Pala
,
J.
White
,
E.
Barnard
,
J.
Liu
, and
M. L.
Brongersma
, “
Design of plasmonic thin-film solar cells with broadband absorption enhancements
,”
Adv. Mater.
21
,
3504
(
2009
).
37.
W.
Wang
,
S.
Wu
,
K.
Reinhardt
,
Y.
Lu
, and
S.
Chen
, “
Broadband light absorption enhancement in thin-film silicon solar cells
,”
Nano Lett.
10
,
2012
(
2010
).
38.
P. B.
Catrysse
and
S.
Fan
, “
Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices
,”
Nano Lett.
10
,
2944
(
2010
).
39.
C. J.
Brabec
,
S. E.
Shaheen
,
C.
Winder
, and
N. S.
Sariciftci
, “
Effect of LiF/metal electrodes on the performance of plastic solar cells
,”
Appl. Phys. Lett.
80
,
1288
(
2002
).
40.
Reference Guide for FDTD Solution Release 7.5 (2011), Lumerical Solutions Inc.
41.
See supplementary material at http://dx.doi.org/10.1063/1.4790504 for the optimizations of (1) the thickness of the bottom metallic nanohole arrays, (2) the period of the bottom metallic nanohole arrays, (3) the diameter of the top metallic nanodisc arrays; and (4) Electric field distributions for the hybrid SPP modes and two uncoupled SPP modes.
42.
M. J.
Weber
,
Handbook of Optical Materials
(
CRC
,
Boca Raton
,
2003
).
43.
H.
Raether
,
Surface Plasmons on Smooth and Rough Surfaces and on Gratings
(
Springer-Verlag
,
Berlin
,
1988
).
44.
C. F.
Bohren
and
D. R.
Huffman
,
Aborption and scattering of light by small particles
(
Wiley
,
New York
,
1983
).
45.
U.
Kreibig
and
M.
Vollmer
,
Optical Properties of Metal Clusters
(
Springer
,
Berlin
,
1995
).
46.
K. J.
Moreno
,
I.
Moggio
,
E.
Arias
,
I.
Llarena
,
S. E.
Moya
,
R. F.
Ziolo
, and
H.
Barrientos
, “
Silver nanoparticles functionalized in situ with the conjugated polymer (PEDOT:PSS)
,”
J. Nanosci. Nanotechnol.
9
,
3987
(
2009
).
47.
K.
Aydin
,
V. E.
Ferry
,
R. M.
Briggs
, and
H. A.
Atwater
, “
Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers
,”
Nat. Commun.
2
,
517
(
2011
).
48.
C. M.
Watts
,
X. L.
Liu
, and
W. J.
Padilla
, “
Metamaterial electromagnetic wave absorbers
,”
Adv. Mater.
24
,
OP98
(
2012
).
49.
N.
Liu
,
M.
Mesch
,
T.
Weiss
,
M.
Hentschel
, and
H.
Giessen
, “
Infrared perfect absorber and its application as plasmonic sensor
,”
Nano Lett.
10
,
2342
(
2010
).
50.
S. Y.
Chou
and
W.
Ding
, “
Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array
,”
Opt. Express
21
,
A60
(
2013
).

Supplementary Material

You do not currently have access to this content.