The spectral distribution of quantum detection efficiency of X- and γ-ray Schottky diodes based on semi-insulating CdTe or Cd0.9Zn0.1Te crystals is substantiated and obtained in analytical form. It is shown that the width of the space charge region (SCR) of 6–40 μm at zero bias in CdTe (Cd0.9Zn0.1Te) Schottky diode is optimal for detecting radiation in the photon energy range above 5–10 keV. Based on the Poisson equation, the relationship between the SCR width and the composition of impurities and the degree of their compensation are investigated. It is shown that the presence of deep levels in the bandgap leads to a considerable increase in space charge density and electric field strength near the crystal surface. However, this effect contributes a small error in the determination of the SCR width using the standard formula for the Schottky diode. It is also shown that the concentration of uncompensated impurities in CdTe and Cd0.9Zn0.1Te crystals within the 4 × 1011–1013 cm–3 range is optimal for the detection efficiency of X- and γ-rays in the photon high-energy range. The record-high values of energy resolution have been obtained in the spectra of 241Am, 57Co, 133Ba and 137Cs isotopes measured using CdTe crystals with Schottky diodes because the concentration of uncompensated donors in the CdTe crystals (1–2) × 1012 cm–3 falls on an interval of maximum detection efficiency. In the spectrum of 57Co isotope, the limiting energy resolution has been achieved.

1.
E. N.
Arkad'eva
,
O. A.
Matveev
,
S. M.
Ryvkin
, and
Yu. V.
Rud
',
Sov. Phys. Tech. Phys.
36
,
846
(
1966
).
2.
T.
Takahashi
,
K.
Hirose
,
C.
Matsumoto
,
K.
Takizawa
,
R.
Ohno
,
T.
Ozaki
,
K.
Mori
, and
Y.
Tomita
,
Proc. SPIE
3446
,
29
(
1998
).
3.
T.
Takahashi
,
B.
Paul
,
K.
Hirose
,
S.
Matsumoto
,
R.
Ohno
,
T.
Ozaki
,
K.
Mori
, and
Y.
Tomita
,
Nucl. Instrum. Methods Phys. Res. A
436
,
111
(
1999
).
4.
M.
Lavagna
,
J. P.
Pique
, and
Y.
Marfaing
,
Solid-State Electron.
20
,
235
(
1977
).
5.
See http://physics.nist.gov/PhysRefData/XrayMassCoeff for National Institute of Standards and Technology, USA,
1997
.
6.
L. A.
Kosyachenko
,
C. P.
Lambropoulos
,
T.
Aoki
,
E.
Dieguez
,
M.
Fiederle
,
D.
Loukas
,
O. V.
Sklyarchuk
,
O. L.
Maslyanchuk
,
E. V.
Grushko
,
V. M.
Sklyarchuk
,
J.
Crocco
, and
H.
Bensalah
,
Semicond. Sci. Technol.
27
(
1
),
015007
(
2012
).
7.
O. L.
Maslyanchuk
,
L. A.
Kosyachenko
,
V. A.
Gnatyuk
,
T.
Aoki
,
I. M.
Rarenko
, and
V. M.
Sklyarchuk
,
Phys. Status Solidi C
6
,
1282
(
2009
).
9.
L. A.
Kosyachenko
and
O. L.
Maslyanchuk
,
Phys. Status Solidi C
2
,
1194
(
2005
).
10.
See http://www.acrorad.co.jp/us/cdte for Acrorad Inc. What is CdTe.
11.
S. M.
Sze
and
K. K.
Ng
,
Physics of Semiconductor Devices
, 3d ed. (
John Wiley & Sons, Inc.
,
Hoboken, New Jersey
,
2007
), pp.
136
139
.
12.
M.
Hofmann
,
W.
Stadler
,
P.
Chrismann
, and
B. K.
Meyer
,
Nucl. Instrum. Methods Phys. Res. A
380
,
117
(
1996
).
13.
A.
Castaldini
,
A.
Cavallini
,
B.
Fraboni
,
P.
Fernandez
, and
J.
Piqueras
,
J. Appl. Phys.
83
,
2121
(
1998
).
14.
M.
Zha
,
E.
Gombia
,
F.
Bissoli
,
A.
Zappettini
, and
L.
Zanotti
.
Phys. Status Solidi B
229
,
15
(
2002
).
15.
16.
U. V.
Desnica
,
I. D.
Desnica-Frankovic
,
R.
Magerle
,
A.
Burchard
, and
M.
Deicher
,
J. Cryst. Growth
197
,
612
(
1999
).
17.
S.
Lany
,
H.
Wolf
, and
Th.
Wichert
,
MRS Proceedings
763
,
B1
3
(
2003
).
18.
L. A.
Kosyachenko
,
S. V.
Melnychuk
,
O. L.
Maslyanchuk
,
V. M.
Sklyarchuk
,
O. F.
Sklyarchuk
,
M.
Fiederle
, and
C. P.
Lambropoulos
,
J. Appl. Phys.
112
,
013705
(
2012
) (8 pp).
19.
L. A.
Kosyachenko
,
V. M.
Sklyarchuk
,
S. V.
Melnychuk
,
O. L.
Maslyanchuk
,
E. V.
Grushko
, and
O. V.
Sklyarchuk
,
Semiconductors
46
,
374
(
2012
).
20.
L. A.
Kosyachenko
,
V. A.
Gnatyuk
,
T.
Aoki
,
V. M.
Sklyarchuk
,
O. F.
Sklyarchuk
, and
O. L.
Maslyanchuk
.
Appl. Phys. Lett.
94
,
092109
(
2009
) (pp3).
You do not currently have access to this content.