Carbon nanoscrolls (graphene layers rolled up into papyrus-like tubular structures) are nanostructures with unique and interesting characteristics that could be exploited to build several new nanodevices. However, an efficient and controlled synthesis of these structures was not achieved yet, making its large scale production a challenge to materials scientists. Also, the formation process and detailed mechanisms that occur during its synthesis are not completely known. In this work, using fully atomistic molecular dynamics simulations, we discuss a possible route to nanoscrolls made from graphene layers deposited over silicon oxide substrates containing chambers/pits. The scrolling mechanism is triggered by carbon nanotubes deposited on the layers. The process is completely general and can be used to produce scrolls from other lamellar materials, like boron nitride, for instance.

1.
R.
Bacon
,
J. Appl. Phys.
31
,
283
(
1960
).
2.
S.
Ijima
,
Nature
354
,
56
(
1991
).
3.
V. R.
Coluci
,
S. F.
Braga
,
R. H.
Baughman
, and
D. S.
Galvao
,
Phys. Rev. B
75
,
125404
(
2007
).
4.
X.
Shi
,
Y.
Cheng
,
N. M.
Pugno
, and
H.
Gao
,
Appl. Phys. Lett.
96
,
053115
(
2010
).
5.
M. L.
Viculis
,
J. J.
Mack
, and
R. B.
Kaner
,
Science
299
,
1361
(
2003
).
6.
H.
Shioyama
and
T.
Akita
,
Carbon
41
,
179
(
2003
).
7.
D.
Tomanek
,
Physica B
323
,
86
(
2002
).
8.
S. F.
Braga
,
V. R.
Coluci
,
S. B.
Legoas
,
R.
Giro
,
D. S.
Galvao
, and
R. H.
Baughman
,
Nano Lett.
4
,
881
(
2004
).
9.
H.
Pan
,
Y.
Feng
, and
J.
Lin
,
Phys. Rev. B
72
,
085415
(
2005
).
10.
R.
Rurali
,
V. R.
Coluci
, and
D. S.
Galvao
,
Phys. Rev. B
74
,
085414
(
2006
).
11.
V. M.
Savoskin
,
V. N.
Mochalin
,
A. P.
Yaroshenki
,
N. I.
Lazareva
,
T. E.
Konstantinova
,
I. V.
Barsukov
, and
I. O.
Prokofiev
,
Carbon
45
,
2797
(
2007
).
12.
X.
Xie
,
L.
Ju
,
X.
Feng
,
Y.
Sun
,
R.
Zhou
,
K.
Liu
,
S.
Fan
,
Q.
Li
, and
K.
Jiang
,
Nano Lett.
9
,
2565
(
2009
).
13.
Z.
Zhang
and
T.
Li
,
Appl. Phys. Lett.
97
,
081909
(
2010
).
14.
L.
Chu
,
Q.
Xue
,
T.
Zhang
, and
C.
Ling
,
J. Phys. Chem. C
115
,
15217
(
2011
).
15.
X.
Chen
,
L.
Li
,
X.
Sun
,
H. G.
Kia
, and
H.
Peng
,
Nanotechnology
23
,
055603
(
2012
).
16.
E.
Perim
and
D. S.
Galvão
,
Nanotechnology
20
,
335702
(
2009
).
17.
A.
Rubio
,
J. L.
Corkill
, and
M. L.
Cohen
,
Phys. Rev. B
49
,
5081
(
1994
).
18.
X.
Blasé
,
A.
Rubio
,
S. G.
Louie
, and
M. L.
Cohen
,
Europhys. Lett.
28
,
335
(
1994
).
19.
A. K.
Rappe
,
C. J.
Casewit
,
K. S.
Colwell
,
W. A.
Goddard
 III
, and
W. M.
Skiff
,
J. Am. Chem. Soc.
114
,
10024
(
1992
).
20.
materials studio is a suite of simulation programs available from Accelrys. Accelrys, Inc. 10188 Telesis Court, Suite 100, San Diego, CA, 9212, USA, http://www.accelrys.com.
21.
J. S.
Bunch
 et al,
Nano Lett.
8
,
2458
(
2008
).
22.
See supplementary material at http://dx.doi.org/10.1063/1.4790304 for corresponding videos of Figs. 6–8, where these processes can be better visualized.
23.
X.
Chen
,
R. A.
Boulos
,
J. F.
Dobson
, and
C. L.
Raston
,
Nanoscale
5
,
498
(
2013
).

Supplementary Material

You do not currently have access to this content.