An efficient on-chip coupling mechanism is essential for nanoplasmonic circuits and elements. We show theoretically that end-fire coupling is a promising candidate to deliver light into regions with subwavelength dimension on flat metal surfaces. A design and optimization principle is presented for a flat metal surface and further demonstrated in a plasmonic Mach-Zehnder interferometer platform. The physical mechanism is discussed based on reciprocity. By considering the radiation pattern and position of the incidence, the coupling efficiency at the metal/air interface can be enhanced up to 77.6%–95.4%, which is promising to develop energy-efficient applications for on-chip plasmonic waveguide networks and sensors.
REFERENCES
1.
H.
Raether
, Surface Plasmons on Smooth and Rough Surfaces and on Gratings
(Springer-Verlag
, Berlin
, 1988
).2.
H. J.
Lezec
, J. A.
Dionne
, and H. A.
Atwater
, “Negative refraction at visible frequencies
,” Science
316
, 430
(2007
).3.
K.
Diest
, J. A.
Dionne
, M.
Spain
, and H. A.
Atwater
, “Tunable color filters based on metal-insulator-metal resonators
,” Nano Lett.
9
, 2579
(2009
).4.
H.
Schouten
, N.
Kuzmin
, G.
Dubois
, T.
Visser
, G.
Gbur
, P.
Alkemade
, H.
Blok
, G. W.
'tHooft
, D.
Lenstra
, and E. R.
Eliel
, “Plasmom-assisted two-slit transmission: Young's experiment revisited
,” Phys. Rev. Lett.
94
, 053901
(2005
).5.
D.
Pacifici
, H.
Lezec
, and H.
Atwater
, “All-optical modulation by plasmonic excitation of CdSe quantum dots
,” Nature Photon.
1
, 402
(2007
).6.
P.
Lalanne
, J. P.
Hugonin
, and J. C.
Rodier
, “Theory of surface plasmon generation at nanoslit apertures
,” Phys. Rev. Lett.
95
, 263902
(2005
).7.
P.
Lalanne
and J. P.
Hugonin
, “Interaction between optical nano-objects at metallo-dielectric interfaces
,” Nat. Phys.
2
, 551
(2006
).8.
H.
Hu
, X.
Zeng
, L.
Wang
, Y.
Xu
, G.
Song
, and Q.
Gan
, Appl. Phys. Lett.
101
, 121112
(2012
).9.
Q.
Gan
, Y.
Gao
, Q.
Wang
, L.
Zhu
, and F.
Bartoli
, “Observation of surface plasmon waves generated by nanogrooves through spectral interference
,” Phys. Rev. B
81
, 085443
(2010
).10.
H.
Noh
, Y.
Chong
, A. D.
Stone
, and H.
Cao
, “Perfect coupling of light to surface plasmons by coherent absorption
,” Phys. Rev. Lett.
108
, 186805
(2012
).11.
A.
Andryieuski
and A. V.
Lavrinenko
, Adv. OptoElectron.
2012
, 839747
(2012
).12.
X.
Chen
, V.
Sandoghdar
, and M.
Agio
, “Highly efficient interfacing of guided plasmons and photons in nanowires
,” Nano Lett.
9
, 3756
(2009
).13.
Y.
Song
, J.
Wang
, Q.
Li
, M.
Yan
, and M.
Qiu
, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide
,” Opt. Express
18
, 13173
(2010
).14.
X.
Chen
, V.
Sandoghdar
, and M.
Agio
, “Nanofocusing radially-polarized beams for highthroughput funneling of optical energy to the near field
,” Opt. Express
18
, 10878
(2010
).15.
Z.
Han
, Y.
Elezzabi
, and V.
Van
, “Experimental realization of subwavelength plasmonic slot waveguides on a silicon platform
,” Opt. Lett.
35
, 502
(2010
).16.
S. Y.
Lee
, J.
Park
, M.
Kang
, and B.
Lee
, “Highly efficient plasmonic interconnector based on the asymmetric junction between metal- dielectric-metal and dielectric slab waveguides
,” Opt. Express
19
(10), 9562
–9574
(2011
).17.
S. I.
Bozhevolnyi
, V. S.
Volkov
, E.
Devaux
, J.
Laluet
, and T. W.
Ebbesen
, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators
,” Nature
440
, 508
(2006
).18.
I. D.
Leon
and P.
Berini
, “Amplification of long-range surface plasmons by a dipolar gain medium
,” Nature Photon.
4
, 382
(2010
).19.
X.
Wu
, J.
Zhang
, J.
Chen
, C.
Zhao
, and Q.
Gong
, “Refractive index sensor based on surface-plasmoninterference
,” Opt. Lett.
34
(3
), 392
(2009
).20.
Q.
Gan
, Y.
Gao
, and F. J.
Bartoli
, “Vertical plasmonic Mach-Zehnder interferometer for ultra-sensitive optical sensing
,” Opt. Express
17
, 20747
(2009
).21.
Y.
Gao
, Q.
Gan
, Z.
Xin
, Y.
Jeon
, K.
Surawathanawises
, X.
Cheng
, and F. J.
Bartoli
, “Plasmonic Mach-Zehnder interferometer for sensitive on-chip biosensing
,” ACS Nano
5
, 9836
(2011
).22.
23.
S. A.
Maier
, Plasmonics: Fundamental and Applications
(Springer
, New York
, 2007
).24.
A. W.
Snyder
and J. D.
Love
, Optical Waveguide Theory
(Chapman and Hall
, New York
, 1983
).25.
P.
Lalanne
, J. P.
Hugonin
, H. T.
Liu
, and B.
Wang
, “A microscopic view of the electromagnetic properties of sub-λ metallic surface
,” Surf. Sci. Rep.
64
, 453
(2009
).26.
R.
Briggs
, J.
Grandidier
, S.
Burgos
, E.
Feigenbaum
, and H.
Atwater
, “Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides
,” Nano Lett.
10
, 4851
(2010
).27.
C. S.
Kim
, I.
Vurgaftman
, R. A.
Flynn
, M.
Kim
, J. R.
Lindle
, W. W.
Bewley
, K.
Bussmann
, J. R.
Meyer
, and J. P.
Long
, “An integrated surface-plasmon source
,” Opt. Express
18
, 10609
(2010
).28.
H. C.
Cassey
and M. B.
Panish
, Heterostructure Lasers: Fundamental Principles
(Academic
, 1978
), pp. 71
–75
.29.
D. M.
Koller
, A.
Hohenau
, H.
Ditlbacher
, N.
Galler
, F.
Reil
, F. R.
Aussenegg
, A.
Leitner
, E.
List
, and J.
Krenn
, “Organic plasmon-emitting diode
,” Nature Photon.
2
, 684
(2008
).30.
See supplementary material at http://dx.doi.org/10.1063/1.4789809 for the derivation of the angular radiation distribution in the far field.
© 2013 American Institute of Physics.
2013
American Institute of Physics
You do not currently have access to this content.