An efficient on-chip coupling mechanism is essential for nanoplasmonic circuits and elements. We show theoretically that end-fire coupling is a promising candidate to deliver light into regions with subwavelength dimension on flat metal surfaces. A design and optimization principle is presented for a flat metal surface and further demonstrated in a plasmonic Mach-Zehnder interferometer platform. The physical mechanism is discussed based on reciprocity. By considering the radiation pattern and position of the incidence, the coupling efficiency at the metal/air interface can be enhanced up to 77.6%–95.4%, which is promising to develop energy-efficient applications for on-chip plasmonic waveguide networks and sensors.

1.
H.
Raether
,
Surface Plasmons on Smooth and Rough Surfaces and on Gratings
(
Springer-Verlag
,
Berlin
,
1988
).
2.
H. J.
Lezec
,
J. A.
Dionne
, and
H. A.
Atwater
, “
Negative refraction at visible frequencies
,”
Science
316
,
430
(
2007
).
3.
K.
Diest
,
J. A.
Dionne
,
M.
Spain
, and
H. A.
Atwater
, “
Tunable color filters based on metal-insulator-metal resonators
,”
Nano Lett.
9
,
2579
(
2009
).
4.
H.
Schouten
,
N.
Kuzmin
,
G.
Dubois
,
T.
Visser
,
G.
Gbur
,
P.
Alkemade
,
H.
Blok
,
G. W.
'tHooft
,
D.
Lenstra
, and
E. R.
Eliel
, “
Plasmom-assisted two-slit transmission: Young's experiment revisited
,”
Phys. Rev. Lett.
94
,
053901
(
2005
).
5.
D.
Pacifici
,
H.
Lezec
, and
H.
Atwater
, “
All-optical modulation by plasmonic excitation of CdSe quantum dots
,”
Nature Photon.
1
,
402
(
2007
).
6.
P.
Lalanne
,
J. P.
Hugonin
, and
J. C.
Rodier
, “
Theory of surface plasmon generation at nanoslit apertures
,”
Phys. Rev. Lett.
95
,
263902
(
2005
).
7.
P.
Lalanne
and
J. P.
Hugonin
, “
Interaction between optical nano-objects at metallo-dielectric interfaces
,”
Nat. Phys.
2
,
551
(
2006
).
8.
H.
Hu
,
X.
Zeng
,
L.
Wang
,
Y.
Xu
,
G.
Song
, and
Q.
Gan
,
Appl. Phys. Lett.
101
,
121112
(
2012
).
9.
Q.
Gan
,
Y.
Gao
,
Q.
Wang
,
L.
Zhu
, and
F.
Bartoli
, “
Observation of surface plasmon waves generated by nanogrooves through spectral interference
,”
Phys. Rev. B
81
,
085443
(
2010
).
10.
H.
Noh
,
Y.
Chong
,
A. D.
Stone
, and
H.
Cao
, “
Perfect coupling of light to surface plasmons by coherent absorption
,”
Phys. Rev. Lett.
108
,
186805
(
2012
).
11.
A.
Andryieuski
and
A. V.
Lavrinenko
,
Adv. OptoElectron.
2012
,
839747
(
2012
).
12.
X.
Chen
,
V.
Sandoghdar
, and
M.
Agio
, “
Highly efficient interfacing of guided plasmons and photons in nanowires
,”
Nano Lett.
9
,
3756
(
2009
).
13.
Y.
Song
,
J.
Wang
,
Q.
Li
,
M.
Yan
, and
M.
Qiu
, “
Broadband coupler between silicon waveguide and hybrid plasmonic waveguide
,”
Opt. Express
18
,
13173
(
2010
).
14.
X.
Chen
,
V.
Sandoghdar
, and
M.
Agio
, “
Nanofocusing radially-polarized beams for highthroughput funneling of optical energy to the near field
,”
Opt. Express
18
,
10878
(
2010
).
15.
Z.
Han
,
Y.
Elezzabi
, and
V.
Van
, “
Experimental realization of subwavelength plasmonic slot waveguides on a silicon platform
,”
Opt. Lett.
35
,
502
(
2010
).
16.
S. Y.
Lee
,
J.
Park
,
M.
Kang
, and
B.
Lee
, “
Highly efficient plasmonic interconnector based on the asymmetric junction between metal- dielectric-metal and dielectric slab waveguides
,”
Opt. Express
19
(10),
9562
9574
(
2011
).
17.
S. I.
Bozhevolnyi
,
V. S.
Volkov
,
E.
Devaux
,
J.
Laluet
, and
T. W.
Ebbesen
, “
Channel plasmon subwavelength waveguide components including interferometers and ring resonators
,”
Nature
440
,
508
(
2006
).
18.
I. D.
Leon
and
P.
Berini
, “
Amplification of long-range surface plasmons by a dipolar gain medium
,”
Nature Photon.
4
,
382
(
2010
).
19.
X.
Wu
,
J.
Zhang
,
J.
Chen
,
C.
Zhao
, and
Q.
Gong
, “
Refractive index sensor based on surface-plasmoninterference
,”
Opt. Lett.
34
(
3
),
392
(
2009
).
20.
Q.
Gan
,
Y.
Gao
, and
F. J.
Bartoli
, “
Vertical plasmonic Mach-Zehnder interferometer for ultra-sensitive optical sensing
,”
Opt. Express
17
,
20747
(
2009
).
21.
Y.
Gao
,
Q.
Gan
,
Z.
Xin
,
Y.
Jeon
,
K.
Surawathanawises
,
X.
Cheng
, and
F. J.
Bartoli
, “
Plasmonic Mach-Zehnder interferometer for sensitive on-chip biosensing
,”
ACS Nano
5
,
9836
(
2011
).
22.
E. D.
Palik
,
Handbook of Optical Constants of Solids
(
Academic
,
New York
,
1985
).
23.
S. A.
Maier
,
Plasmonics: Fundamental and Applications
(
Springer
,
New York
,
2007
).
24.
A. W.
Snyder
and
J. D.
Love
,
Optical Waveguide Theory
(
Chapman and Hall
,
New York
,
1983
).
25.
P.
Lalanne
,
J. P.
Hugonin
,
H. T.
Liu
, and
B.
Wang
, “
A microscopic view of the electromagnetic properties of sub-λ metallic surface
,”
Surf. Sci. Rep.
64
,
453
(
2009
).
26.
R.
Briggs
,
J.
Grandidier
,
S.
Burgos
,
E.
Feigenbaum
, and
H.
Atwater
, “
Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides
,”
Nano Lett.
10
,
4851
(
2010
).
27.
C. S.
Kim
,
I.
Vurgaftman
,
R. A.
Flynn
,
M.
Kim
,
J. R.
Lindle
,
W. W.
Bewley
,
K.
Bussmann
,
J. R.
Meyer
, and
J. P.
Long
, “
An integrated surface-plasmon source
,”
Opt. Express
18
,
10609
(
2010
).
28.
H. C.
Cassey
and
M. B.
Panish
,
Heterostructure Lasers: Fundamental Principles
(
Academic
,
1978
), pp.
71
75
.
29.
D. M.
Koller
,
A.
Hohenau
,
H.
Ditlbacher
,
N.
Galler
,
F.
Reil
,
F. R.
Aussenegg
,
A.
Leitner
,
E.
List
, and
J.
Krenn
, “
Organic plasmon-emitting diode
,”
Nature Photon.
2
,
684
(
2008
).
30.
See supplementary material at http://dx.doi.org/10.1063/1.4789809 for the derivation of the angular radiation distribution in the far field.

Supplementary Material

You do not currently have access to this content.