ZrO2/ZrGe2O3 superlattices were deposited on Si wafers and thermally treated at different temperatures to form Ge nanocrystals embedded in a ZrO2 matrix. The formation process of Ge nanocrystals has been investigated by means of methods like Raman spectroscopy, X-ray diffraction, and transmission electron microscopy. With increasing temperature, there is first a separation process leading to flat Ge clusters between amorphous ZrO2 layers and then at about 630 °C a crystallization process of both the Ge clusters and the ZrO2 layers starts simultaneously. An orientation relation of the Ge and ZrO2 nanocrystals could be proven by high-resolution transmission electron microscopy.
REFERENCES
1.
L.
Pavesi
, L.
Dal Negro
, C.
Mazzoleni
, G.
Franz
, and F.
Priolo
, Nature
408
, 440
(2000
).2.
L.
Pavesi
and R.
Turan
, Silicon Nanocrystals: Fundamentals, Synthesis and Applications
(Wiley-VCH
, Weinheim
, 2010
).3.
G.
Conibeer
, M. A.
Green
, R.
Corkish
, Y.
Cho
, E.
Cho
, C.
Jiang
, T.
Fangsuwannarak
, E.
Pink
, Y.
Huang
, and T.
Puzzer
, Thin Solid Films
511–512
, 654
(2006
).4.
M.
Zschintzsch
, N. M.
Jeutter
, J.
von Borany
, M.
Krause
, and A.
Mücklich
, J. Appl. Phys.
107
, 34306
(2010
).5.
M.
Fujii
, M.
Yoshida
, S.
Hayashi
, and K.
Yamamoto
, J. Appl. Phys.
84
, 4525
(1998
).6.
V. Y.
Timoshenko
, M. G.
Lisachenko
, B. V.
Kamenev
, O. A.
Shalygina
, P. K.
Kashkarov
, J.
Heitmann
, M.
Schmidt
, and M.
Zacharias
, Appl. Phys. Lett.
84
, 2512
(2004
).7.
I.
Hyppänen
, J.
Hölsä
, J.
Kankare
, M.
Lastusaari
, and L.
Pihlgren
, J. Nanomater.
2007
, 1
.8.
S.
Tiwari
, F.
Rana
, H.
Hanafi
, A.
Hartstein
, E. F.
Crabbé
, and K.
Chan
, Appl. Phys. Lett.
68
, 1377
(1996
).9.
Y. Q.
Wang
, J.
Hao Chen
, W.
Jong Yoo
, Y.-C.
Yeo
, S.
Jung Kim
, R.
Gupta
, Z. Y. L.
Tan
, D.-L.
Kwong
, A.
Yan Du
, and N.
Balasubramanian
, Appl. Phys. Lett.
84
, 5407
(2004
).10.
T. Z.
Lu
, M.
Alexe
, R.
Scholz
, V.
Talelaev
, and M.
Zacharias
, Appl. Phys. Lett.
87
, 202110
(2005
).11.
D.-W.
Kim
, T.
Kim
, and S. K.
Banerjee
, IEEE Trans. Electron Devices
50
, 1823
(2003
).12.
A.
Shalav
, B. S.
Richards
, and M. A.
Green
, Sol. Energy Mater. Solar Cells
91
, 829
(2007
).13.
M.
Fujii
, M.
Yoshida
, Y.
Kanzawa
, S.
Hayashi
, and K.
Yamamoto
, Appl. Phys. Lett.
71
, 1198
(1997
).14.
B.
Savoini
, J. E.
Munoz-Santiuste
, R.
González
, G. K.
Cruz
, C.
Bonardi
, and R.
Carvalho
, J. Alloys Compd.
323–324
, 748
(2001
).15.
M.
Zacharias
, J.
Heitmann
, R.
Scholz
, U.
Kahler
, M.
Schmidt
, and J.
Bläsing
, Appl. Phys. Lett.
80
, 661
(2002
).16.
G. G.
Siu
, M. J.
Stokes
, and Y.
Liu
, Phys. Rev. B
59
, 3173
(1999
).17.
P. E.
Quintard
, P.
Barbéris
, A. P.
Mirgorodsky
, and T.
Merle-Méjean
, J. Am. Ceramic Soc.
85
, 1745
(2002
).18.
M.
Zschintzsch
, C. J.
Sahle
, J.
von Borany
, C.
Sternemann
, A.
Mücklich
, A.
Nyrow
, A.
Schwamberger
, and M.
Tolan
, Nanotechnology
22
, 485303
(2011
).19.
M.
Wihl
, M.
Cardona
, and J.
Tauc
, J. Non-Cryst. Solids
8–10
, 172
(1972
).20.
S.
Guha
, M.
Wall
, and L. L.
Chase
, Nucl. Instrum. Meth. B
147
, 367
(1999
).21.
Y. X.
Jie
, A. T. S.
Wee
, C. H. A.
Huan
, W. X.
Sun
, Z. X.
Shen
, and S. J.
Chua
, Mat. Sci. Eng. B
107
, 8
(2004
).22.
J. R.
Heath
, J. J.
Shiang
, and A. P.
Alivisatos
, J. Chem. Phys.
101
, 1607
(1994
).23.
Y.
Wang
, Mater. Lett.
29
, 159
(1996
).24.
M. R.
Anseau
, C.
Leblud
, and F.
Cambier
, J. Mater. Sci. Lett.
2
, 366
(1983
).© 2013 American Institute of Physics.
2013
American Institute of Physics
You do not currently have access to this content.