ZrO2/ZrGe2O3 superlattices were deposited on Si wafers and thermally treated at different temperatures to form Ge nanocrystals embedded in a ZrO2 matrix. The formation process of Ge nanocrystals has been investigated by means of methods like Raman spectroscopy, X-ray diffraction, and transmission electron microscopy. With increasing temperature, there is first a separation process leading to flat Ge clusters between amorphous ZrO2 layers and then at about 630 °C a crystallization process of both the Ge clusters and the ZrO2 layers starts simultaneously. An orientation relation of the Ge and ZrO2 nanocrystals could be proven by high-resolution transmission electron microscopy.

1.
L.
Pavesi
,
L.
Dal Negro
,
C.
Mazzoleni
,
G.
Franz
, and
F.
Priolo
,
Nature
408
,
440
(
2000
).
2.
L.
Pavesi
and
R.
Turan
,
Silicon Nanocrystals: Fundamentals, Synthesis and Applications
(
Wiley-VCH
,
Weinheim
,
2010
).
3.
G.
Conibeer
,
M. A.
Green
,
R.
Corkish
,
Y.
Cho
,
E.
Cho
,
C.
Jiang
,
T.
Fangsuwannarak
,
E.
Pink
,
Y.
Huang
, and
T.
Puzzer
,
Thin Solid Films
511–512
,
654
(
2006
).
4.
M.
Zschintzsch
,
N. M.
Jeutter
,
J.
von Borany
,
M.
Krause
, and
A.
Mücklich
,
J. Appl. Phys.
107
,
34306
(
2010
).
5.
M.
Fujii
,
M.
Yoshida
,
S.
Hayashi
, and
K.
Yamamoto
,
J. Appl. Phys.
84
,
4525
(
1998
).
6.
V. Y.
Timoshenko
,
M. G.
Lisachenko
,
B. V.
Kamenev
,
O. A.
Shalygina
,
P. K.
Kashkarov
,
J.
Heitmann
,
M.
Schmidt
, and
M.
Zacharias
,
Appl. Phys. Lett.
84
,
2512
(
2004
).
7.
I.
Hyppänen
,
J.
Hölsä
,
J.
Kankare
,
M.
Lastusaari
, and
L.
Pihlgren
,
J. Nanomater.
2007
,
1
.
8.
S.
Tiwari
,
F.
Rana
,
H.
Hanafi
,
A.
Hartstein
,
E. F.
Crabbé
, and
K.
Chan
,
Appl. Phys. Lett.
68
,
1377
(
1996
).
9.
Y. Q.
Wang
,
J.
Hao Chen
,
W.
Jong Yoo
,
Y.-C.
Yeo
,
S.
Jung Kim
,
R.
Gupta
,
Z. Y. L.
Tan
,
D.-L.
Kwong
,
A.
Yan Du
, and
N.
Balasubramanian
,
Appl. Phys. Lett.
84
,
5407
(
2004
).
10.
T. Z.
Lu
,
M.
Alexe
,
R.
Scholz
,
V.
Talelaev
, and
M.
Zacharias
,
Appl. Phys. Lett.
87
,
202110
(
2005
).
11.
D.-W.
Kim
,
T.
Kim
, and
S. K.
Banerjee
,
IEEE Trans. Electron Devices
50
,
1823
(
2003
).
12.
A.
Shalav
,
B. S.
Richards
, and
M. A.
Green
,
Sol. Energy Mater. Solar Cells
91
,
829
(
2007
).
13.
M.
Fujii
,
M.
Yoshida
,
Y.
Kanzawa
,
S.
Hayashi
, and
K.
Yamamoto
,
Appl. Phys. Lett.
71
,
1198
(
1997
).
14.
B.
Savoini
,
J. E.
Munoz-Santiuste
,
R.
González
,
G. K.
Cruz
,
C.
Bonardi
, and
R.
Carvalho
,
J. Alloys Compd.
323–324
,
748
(
2001
).
15.
M.
Zacharias
,
J.
Heitmann
,
R.
Scholz
,
U.
Kahler
,
M.
Schmidt
, and
J.
Bläsing
,
Appl. Phys. Lett.
80
,
661
(
2002
).
16.
G. G.
Siu
,
M. J.
Stokes
, and
Y.
Liu
,
Phys. Rev. B
59
,
3173
(
1999
).
17.
P. E.
Quintard
,
P.
Barbéris
,
A. P.
Mirgorodsky
, and
T.
Merle-Méjean
,
J. Am. Ceramic Soc.
85
,
1745
(
2002
).
18.
M.
Zschintzsch
,
C. J.
Sahle
,
J.
von Borany
,
C.
Sternemann
,
A.
Mücklich
,
A.
Nyrow
,
A.
Schwamberger
, and
M.
Tolan
,
Nanotechnology
22
,
485303
(
2011
).
19.
M.
Wihl
,
M.
Cardona
, and
J.
Tauc
,
J. Non-Cryst. Solids
8–10
,
172
(
1972
).
20.
S.
Guha
,
M.
Wall
, and
L. L.
Chase
,
Nucl. Instrum. Meth. B
147
,
367
(
1999
).
21.
Y. X.
Jie
,
A. T. S.
Wee
,
C. H. A.
Huan
,
W. X.
Sun
,
Z. X.
Shen
, and
S. J.
Chua
,
Mat. Sci. Eng. B
107
,
8
(
2004
).
22.
J. R.
Heath
,
J. J.
Shiang
, and
A. P.
Alivisatos
,
J. Chem. Phys.
101
,
1607
(
1994
).
24.
M. R.
Anseau
,
C.
Leblud
, and
F.
Cambier
,
J. Mater. Sci. Lett.
2
,
366
(
1983
).
You do not currently have access to this content.