Time-and-space resolved comparison of the expansion velocities of plasmas in the planar diode with cathodes made of carbon velvet and polymer velvet has been performed. The diode was powered by a 200 kV, 110 ns pulse, and the peak current density was nearly 477 A/cm2. A four-channel high speed framing camera (HSFC) was used to observe the formation and subsequent movement of the cathode plasmas. More accurate and valuable information about the two-dimensional (radial and axial) velocity components of the cathode plasmas was also acquired by utilizing the digital image processing methods. Additionally, the perveance model based on the Child-Langmuir law was used to calculate the expansion velocities of the diode plasmas from voltage and current profiles. Results from the two diagnostics were compared. Comparing the average values of the radial and axial velocity components indicated that the former was much larger than the latter during the initial period of the current. It was also found that the radial velocity of the carbon velvet cathode (190 cm/μs) was much larger than that (90 cm/μs) of the polymer velvet cathode. Moreover, the average values of both the radial and axial velocity components of the carbon velvet cathode were typically in the range of 2.5 ± 1.5 cm/μs, which were smaller than that of the polymer velvet cathode during the current flattop. These results, together with the comparison of calculated values from the perveance model, indicated that the diode with carbon velvet cathode was more robust as compared with the polymer velvet cathode for the same electron current densities.

1.
D.
Sethian
,
M.
Myers
,
I. D.
Smith
,
V.
Carboni
,
J.
Kishi
,
D.
Morton
,
J.
Pearce
,
B.
Bowen
,
L.
Schlitt
,
O.
Barr
, and
W.
Webster
,
IEEE Trans. Plasma Sci.
28
,
1333
(
2000
).
2.
V.
Engelko
,
B.
Yatsenko
,
G.
Mueller
, and
H.
Bluhm
,
Vacuum
62
,
211
(
2000
).
3.
Y. E.
Krasik
,
D.
Yarmolich
,
J. Z.
Gleizer
,
V.
Vekselman
,
Y.
Hadas
,
V.
Tz. Gurovich
, and
J.
Felsteiner
,
Phys. Plasmas.
16
,
057103
(
2009
).
4.
R. J.
Barker
and
E.
Schamiloglu
,
High-Power Microwave Sources and Technologies
(
The Institute of Electrical and Electronics Engineer, Inc.
,
New York
,
2001
), Chap. 9.
5.
J.
Benford
,
J. A.
Swegle
, and
E.
Schamilogulu
,
High Power Microwaves
, 2nd ed. (
Taylor & Francis Group
,
New York
,
2007
), Chap. 5.
6.
J.
Zhang
,
Z. X.
Jin
,
J. H.
Yang
,
H. H.
Zhong
,
T.
Shu
,
J. D.
Zhang
,
B. L.
Qian
,
C. W.
Yuan
,
Z. Q.
Li
,
Y. W.
Fan
,
S. Y.
Zhou
, and
L. R.
Xu
,
IEEE Trans. Plasma Sci.
39
,
1438
(
2011
).
7.
Y. W.
Fan
,
H. H.
Zhong
,
Z. Q.
Li
,
T.
Shu
,
H. W.
Yang
,
H.
Zhou
,
C. W.
Yuan
,
W. H.
Zhou
, and
L.
Luo
,
Phys. Plasmas.
15
,
083102
(
2008
).
8.
Y. W.
Fan
,
C. W.
Yuan
,
H. H.
Zhong
,
T.
Shu
,
J. D.
Zhang
,
J. H.
Yang
,
H. W.
Yang
,
Y.
Wang
, and
L.
Luo
,
Rev. Sci. Instrum.
79
,
034703
(
2008
).
9.
Y. W.
Fan
,
H. H.
Zhong
,
Z. Q.
Li
,
C. W.
Yuan
,
T.
Shu
,
H. W.
Yang
,
Y.
Wang
, and
L.
Luo
,
IEEE Trans. Plasma Sci.
39
,
540
(
2011
).
10.
Y. E.
Krasik
,
A.
Dunaevsky
, and
J.
Felsteiner
,
Phys. Plasmas.
8
,
2466
(
2001
).
11.
Y. E.
Krasik
,
J. Z.
Gleizer
,
D.
Yarmolich
,
V.
Vekselman
,
Y.
Hadas
,
A.
Krokhmal
,
K.
Chirko
,
O.
Peleg
, and
J.
Felsteiner
,
IEEJ. Trans. Fundam. Mater.
127
,
697
(
2007
).
12.
Y. E.
Krasik
,
J. Z.
Gleizer
,
D.
Yarmolich
,
V.
Vekselman
,
Y.
Hadas
, and
J.
Felsteiner
,
IEEE Trans. Plasma Sci.
36
,
768
(
2008
).
13.
Y. E.
Krasik
,
J. Z.
Gleizer
,
D.
Yarmolich
,
A.
Krokhmal
,
V. T.
Gurovich
,
S.
Efimov
,
J.
Feisteiner
,
V.
Bernshtam
, and
Y. M.
Saveliev
,
J. Appl. Phys.
98
,
093308
(
2005
).
14.
R. B.
Miller
,
J. Appl. Phys.
84
,
3880
(
1998
).
15.
G. A.
Mesyats
,
Cathode Phenomena in a Vacuum Discharge: The Breakdown, the Spark and the Arc
(
Nauka
,
Moscow
,
2000
), Chap. 14.
16.
Y. M.
Saveliev
,
W.
Sibbett
, and
D. M.
Parkes
,
J. Appl. Phys.
94
,
5776
(
2003
).
17.
F.
Hegeler
,
M.
Friedman
,
M. C.
Myers
,
J. D.
Sethian
, and
S. B.
Swanekamp
,
Phys. Plasmas
9
,
4309
(
2002
).
18.
Y. M.
Saveliev
,
B. A.
Kerr
,
M. I.
Harbour
,
S. C.
Douglas
, and
W.
Sibbett
,
IEEE Trans. Plasma Sci.
30
,
938
(
2002
).
19.
Y. E.
Krasik
,
A.
Dunaevsky
, and
J.
Felsteiner
,
Eur. Phys. J. D
15
,
345
(
2001
).
20.
D. A.
Shiffler
,
J. W.
Luginsland
,
R. J.
Umstattd
,
M.
LaCour
,
K.
Golby
,
M. D.
Haworth
,
M.
Ruebush
,
D.
Zagar
,
A.
Gibbbs
, and
T. A.
Spencer
,
IEEE Trans. Plasma Sci.
30
,
1232
(
2002
).
21.
D.
Shiffler
,
M.
Ruebush
,
D.
Zagar
,
M.
LaCour
,
M.
Sena
,
K.
Golby
,
M.
Haworth
, and
R.
Umstattd
,
J. Appl. Phys.
91
,
5599
(
2002
).
22.
D.
Shiffler
,
M.
Haworth
,
K.
Cartwright
,
R.
Umstattd
,
M.
Ruebush
,
S.
Heidger
,
M.
LaCour
,
K.
Golby
,
D.
Sullivan
,
P.
Duselis
, and
J.
Luginsland
,
IEEE Trans. Plasma. Sci.
36
,
718
(
2008
).
23.
D.
Shiffler
,
J.
Heggemeier
,
M.
LaCour
,
K.
Golby
, and
M.
Ruebush
,
Phys. Plasmas
11
,
1680
(
2004
).
24.
D. A.
Shiffler
,
M.
Ruebush
,
M.
LaCour
,
K.
Golby
,
R. J.
Umstattd
,
M. C.
Clark
,
J. W.
Luginsland
,
D.
Zagar
, and
M.
Sena
,
Appl. Phys. Lett.
79
,
2871
(
2001
).
25.
J.
Yang
,
T.
Shu
, and
H.
Wang
,
Phys. Plasmas
19
,
072119
(
2012
).
26.
C. D.
Child
,
Phys. Rev.
32
,
492
(
1911
).
27.
28.
J. J.
Watrous
,
J. W.
Luginsland
, and
M. H.
Frese
,
Phys. Plasmas
8
,
4202
(
2001
).
29.
Y. M.
Saveliev
,
W.
Sibbett
, and
D. M.
Parkes
,
Appl. Phys. Lett.
81
,
2343
(
2002
).
30.
Y. E.
Krasik
,
A.
Dunaevsky
, and
A.
Krokhmal
.
J. Appl. Phys.
89
,
2379
(
2001
).
31.
A. I.
Pushkarev
and
R. V.
Sazonov
,
IEEE Trans. Plasma Sci.
37
,
1901
(
2009
).
32.
J.
Yang
,
T.
Shu
,
J.
Zhang
,
J.
Yang
,
L.
Liu
,
Y.
Yin
,
Y.
Fan
, and
L.
Luo
,
High Power Laser Part. Beams
24
,
963
(
2012
).
You do not currently have access to this content.