Transmission electron microscopy (TEM), atomic force microscopy, and Rutherford backscattering spectrometry (RBS) have been used to investigate the morphology, structure, and composition of self-assembled Ge islands grown on Si (001) substrates by molecular beam epitaxy (MBE) at different temperatures. Increasing the temperature from 550 °C to 700 °C causes progressive size and shape uniformity, accompanied by enhanced Si-Ge intermixing within the islands and their wetting layer. Elemental maps obtained by energy filtered-TEM (EF-TEM) clearly show pronounced Si concentration not only in correspondence of island base perimeters, but also along their curved surface boundaries. This phenomenon is strengthened by an increase of the growth temperature, being practically negligible at 550 °C, while very remarkable already at 650 °C. The resulting island shape is affected, since this localized Si enrichment not only provides strain relief near their highly stressed base perimeters but it also influences the cluster surface energy by effective alloying, so as to form Si-enriched SiGe interfaces. Further increase to 700 °C causes a shape transition where more homogenous Si-Ge concentration profiles are observed. The crucial role played by local “flattened” alloyed clusters, similar to truncated pyramids with larger bases and enhanced Si enrichment at coherently stressed interfaces, has been further clarified by EF-TEM analysis of a multi-layered Ge/Si structure containing stacked Ge islands grown at 650 °C. Sharp accumulation of Si has been here observed not only in proximity of the uncapped island surface in the topmost layer but also at the buried Ge/Si interfaces and even in the core of such capped Ge islands.

1.
D. J.
Eaglesham
and
M.
Cerullo
,
Phys. Rev. Lett.
64
,
1943
(
1990
).
2.
M.
Krishnamurthy
,
J.
Drucker
, and
J. A.
Venables
,
J. Appl. Phys.
69
,
6461
(
1991
).
3.
T. I.
Kamins
,
E. C.
Carr
,
R. S.
Williams
, and
S. J.
Rosner
,
J. Appl. Phys.
81
,
211
(
1997
).
4.
E. T.
Kim
,
A.
Madhukar
,
Z.
Ye
, and
J. C.
Campbell
,
Appl. Phys. Lett.
84
,
3277
(
2004
).
5.
K.
Kawaguchi
,
M.
Morooka
,
K.
Konishi
,
S.
Koh
, and
Y.
Shiraki
,
Appl. Phys. Lett.
81
,
817
(
2002
).
6.
P.
Bhattacharya
,
S.
Ghosh
, and
A. D.
Stiff-Roberts
,
Annu. Rev. Mater. Res.
34
,
1
(
2004
).
7.
K.
Eberl
,
M. O.
Lipinski
,
Y. M.
Manz
,
W.
Winter
,
N. Y.
Jin-Phillipp
, and
O. G.
Schmidt
,
Physica E
9
,
164
(
2001
).
8.
O. G.
Schmidt
,
U.
Denker
,
M.
Dashiell
,
N. Y.
Jin-Phillipp
,
K.
Eberl
,
R.
Schreiner
,
H.
Gräbeldinger
,
H.
Schweizer
,
S.
Christiansen
, and
F.
Ernst
,
Mater. Sci. Eng., B
89
,
101
(
2002
).
9.
K. L.
Wang
,
J. L.
Liu
, and
G.
Jin
,
J. Cryst. Growth
237–239
,
1892
(
2002
).
10.
X.
Deng
and
M.
Krishnamurthy
,
Phys. Rev. Lett.
81
,
1473
(
1998
).
11.
M.
Borgström
,
V.
Zela
, and
W.
Seifert
,
J. Crystal Growth
259
,
262
(
2003
).
12.
N.
Stransky
and
L.
Krastanov
,
Sitzungsber. Akad. Wiss. Wien, Abt. IIb, Band Wiss. Lit.
146
,
797
(
1937
).
13.
Y. W.
Mo
,
D. E.
Savage
,
B. S.
Swartzentruber
, and
M. G.
Lagally
,
Phys. Rev. Lett.
65
,
1020
(
1990
).
14.
C. W.
Snyder
,
J. F.
Mansfield
, and
B. G.
Orr
,
Phys. Rev. B
46
,
9551
(
1992
).
15.
B. J.
Spencer
,
P. W.
Vorhees
, and
S. H.
Davies
,
J. Appl. Phys.
73
,
4955
(
1993
).
16.
J.
Tersoff
and
F. K.
LeGoues
,
Phys. Rev. Lett.
72
,
3570
(
1994
).
17.
F.
Liu
and
M. G.
Lagally
,
Surf. Sci.
386
,
169
(
1997
).
18.
F. M.
Ross
,
J.
Tersoff
, and
R. M.
Tromp
,
Phys. Rev. Lett.
80
,
984
(
1998
).
19.
G.
Medeiros-Ribeiro
,
A. M.
Bratkovski
,
T. I.
Kamins
,
D. A. A.
Ohlberg
, and
R. S.
Williams
,
Science
279
,
353
355
(
1998
).
20.
F. M.
Ross
,
R. M.
Tromp
, and
M. C.
Reuter
,
Science
286
,
1931
1934
(
1999
).
21.
V.
Magidson
,
D. V.
Regelman
,
R.
Beserman
, and
K.
Dettmer
,
Appl. Phys. Lett.
73
,
1044
(
1998
).
22.
F.
Boscherini
,
G.
Capellini
,
L.
Di Gaspare
,
F.
Rosei
,
N.
Motta
, and
S.
Mobilio
,
Appl. Phys. Lett.
76
,
682
(
2000
).
23.
A. V.
Kolobov
,
H.
Oyanagi
,
K.
Brunner
,
P.
Schittenhelm
,
G.
Abstreiter
, and
K.
Tanaka
,
Appl. Phys. Lett.
78
,
451
(
2001
).
24.
Y.
Zhang
,
M.
Floyd
,
K. P.
Driver
,
J.
Drucker
,
P. A.
Crozier
, and
D. J.
Smith
,
Appl. Phys. Lett.
80
,
3623
(
2002
).
25.
M.
De Seta
,
G.
Capellini
,
F.
Evangelisti
, and
C.
Spinella
,
J. Appl. Phys.
92
,
614
(
2002
).
26.
C.
Van de Walle
and
R. M.
Martin
,
Phys. Rev. B
34
,
5621
(
1986
).
27.
M.
Floyd
,
Y.
Zhang
,
K. P.
Driver
,
J.
Drucker
,
P. A.
Crozier
, and
D. J.
Smith
,
Appl. Phys. Lett.
82
,
1473
(
2003
).
28.
G.
Capellini
,
M.
De Seta
, and
F.
Evangelisti
,
Appl. Phys. Lett.
78
,
303
(
2001
).
29.
Z. M.
Jiang
,
X. M.
Jiang
,
W. R.
Jiang
,
Q. J.
Jia
,
W. L.
Zheng
, and
D. C.
Qian
,
Appl. Phys. Lett.
76
,
3397
(
2000
).
30.
O.
Kirfel
,
E.
Müller
,
D.
Grützmacher
, and
K.
Kern
,
Physica E
16
,
602
(
2003
).
31.
D. J.
Smith
,
D.
Chandrasekhar
,
S. A.
Chaparro
,
P. A.
Crozier
,
J.
Drucker
,
M.
Floyd
,
M. R.
McCartney
, and
Y.
Zhang
,
J. Cryst. Growth
259
,
232
(
2003
).
32.
S. A.
Chaparro
,
Y.
Zhang
,
J.
Drucker
,
D.
Chandrasekhar
, and
D. J.
Smith
,
J. Appl. Phys.
87
,
2245
(
2000
).
33.
S.
Chaparro
,
J.
Drucker
,
Z.
Yangting
,
D.
Chandrasekhar
,
M.
McCartney
, and
D. J.
Smith
,
Phys. Rev. Lett.
83
,
1199
(
1999
).
34.
P.
Sutter
and
M. G.
Lagally
,
Phys. Rev. Lett.
81
,
3471
(
1998
).
35.
A.
Rastelli
,
M.
Kummer
, and
H.
von Kaenel
,
Phys. Rev. Lett.
87
,
256101
(
2001
).
36.
C.
Lang
,
S.
Kodambaka
,
F. M.
Ross
, and
D. J. H.
Cockayne
,
Phys. Rev. Lett.
97
,
226104
(
2006
).
37.
M.
De Seta
,
G.
Capellini
, and
F.
Evangelisti
,
Superlattices Microstruct.
46
,
328
(
2009
).
38.
T. I.
Kamins
,
G.
Medeiros-Ribeiro
,
D. A. A.
Ohlberg
, and
R.
Stanley Williams
,
Appl. Phys. A
67
,
727
(
1998
).
39.
X. Z.
Liao
,
J.
Zou
,
D. J. H.
Cockayne
,
J.
Qin
,
Z. M.
Jiang
,
X.
Wang
, and
R.
Leon
,
Phys. Rev. B
60
,
15605
(
1999
).
40.
X. Z.
Liao
,
J.
Zou
,
D. J. H.
Cockayne
,
Z. M.
Jiang
,
X.
Wang
, and
R.
Leon
,
Appl. Phys. Lett.
77
,
1304
(
2000
).
41.
J.
Drucker
 et al,
Surf. Rev. Lett.
7
,
527
(
2000
).
42.
S. A.
Chaparro
,
Y.
Zhang
, and
J.
Drucker
,
Appl. Phys. Lett.
76
,
3534
(
2000
).
43.
A.
Malachias
,
S.
Kycia
,
G.
Medeiros-Ribeiro
,
R.
Magalhaes-Paniago
,
T. I.
Kamins
, and
R. S.
Williams
,
Phys. Rev. Lett.
91
,
176101
(
2003
).
44.
P.
Sonnet
and
P. C.
Kelires
,
Appl. Phys. Lett.
85
,
203
(
2004
).
45.
Y.
Zhang
,
M.
Floyd
,
J.
Drucker
, and
G. L.
Kellog
,
J. App. Phys.
90
,
4748
(
2001
).
46.
U.
Denker
,
M.
Stoffel
, and
O. G.
Schmidt
,
Phys. Rev. Lett.
90
,
196102
(
2003
).
47.
T. U.
Schülli
,
M.
Stoffel
,
A.
Hesse
,
J.
Stangl
,
R. T.
Lechner
,
E.
Wintersberger
,
M.
Sztucki
,
T. H.
Metzger
,
O. G.
Schmidt
, and
G.
Bauer
,
Phys. Rev. B
71
,
035326
(
2005
).
48.
A.
Rastelli
,
M.
Stoffel
,
G.
Katsaros
,
J.
Tersoff
,
U.
Denker
,
T.
Merdzhanova
,
G. S.
Kara
,
G.
Costantini
,
K.
Kern
,
H.
von Känel
, and
O. G.
Schmidt
,
Microelectron. J.
37
,
1471
(
2006
).
49.
A.
Malachias
,
M.
Stoffel
,
M.
Schmidbauer
,
T. Ü.
Schulli
,
G.
Medeiros-Ribeiro
,
O. G.
Schmidt
,
R.
Magalhães-Paniago
, and
T. H.
Metzger
,
Phys. Rev. B
82
,
035307
(
2010
).
50.
J.
Drucker
,
IEEE J. Quantum Electron.
38
,
975
(
2002
).
51.
D. B.
Migas
,
P.
Raiteri
,
L.
Miglio
,
A.
Rastelli
, and
H.
von Känel
,
Phys. Rev. B
69
,
235318
(
2004
).
52.
Y.
Tu
and
J.
Tersoff
,
Phys. Rev. Lett.
93
,
216101
(
2004
).
53.
K. N.
Tu
,
J. W.
Mayer
, and
L. C.
Feldman
,
Electronic Thin Film Science for Electrical Engineers and Materials Scientists
(
Macmillan
,
1992
).
54.
R.
Schorer
,
E.
Friess
,
K.
Eberl
, and
G.
Abstreiter
,
Phys. Rev. B
44
,
1772
(
1991
).
55.
M.
Spadafora
,
A.
Terrasi
,
S.
Mirabella
,
A. M.
Piro
,
M. G.
Grimaldi
,
S.
Scalese
,
E.
Napolitani
,
M.
Di Marino
,
D.
De Salvador
, and
A.
Carnera
,
Mater. Sci. Semicond. Process.
8
,
219
(
2005
).
56.
C.
Lang
,
D.
Nguyen-Manh
, and
D. J. H.
Cockayne
,
Phys. Rev. B
72
,
155328
(
2005
).
57.
F.
Xue
,
J.
Qin
,
J.
Cui
,
Y. L.
Fan
,
Z. M.
Jiang
, and
X. J.
Yang
,
Surf. Sci.
592
,
65
(
2005
).
58.
K.
Brunner
,
Rep. Prog. Phys.
65
,
27
(
2002
).
59.
G.
Springholz
,
M.
Pinczolits
,
V.
Holy
,
S.
Zerlauth
,
I.
Vavra
, and
G.
Bauer
,
Physica E
9
,
149
(
2001
).
60.
J.
Tersoff
,
C.
Teichert
, and
M. G.
Lagally
,
Phys. Rev. Lett.
76
,
1675
(
1996
).
61.
O. G.
Schmidt
,
O.
Kienzle
,
Y.
Hao
,
K.
Eberl
, and
F.
Ernst
,
Appl. Phys. Lett.
74
,
1272
(
1999
).
62.
A.
Lenz
,
R.
Timm
,
H.
Eisele
,
C.
Hennig
,
S. K.
Becker
,
R. L.
Sellin
,
U. W.
Pohl
,
D.
Bimberg
, and
M.
Dahne
,
Appl. Phys. Lett.
81
,
5150
(
2002
).
63.
O.
Kienzle
,
F.
Ernst
,
M.
Ruhle
,
O. G.
Schmidt
, and
K.
Eberl
,
Appl. Phys. Lett.
74
,
269
(
1999
).
64.
U.
Denker
,
H.
Sigg
, and
O. G.
Schmidt
,
Mater. Sci. Eng., B
101
,
89
(
2003
).
66.
P.
Boucaud
,
V.
Le Thanh
,
V.
Yam
,
S.
Sauvage
,
N.
Meneceur
,
M.
Elkurdi
,
D.
Débarre
, and
D.
Bouchier
,
Mater. Sci. Eng., B
89
,
36
(
2002
).
67.
V.
Yam
,
V.
Le Thanh
,
D.
Débarre
,
Y.
Zheng
, and
D.
Bouchier
,
Appl. Surf. Sci.
224
,
143
(
2004
).
68.
D.
Brouri
,
J.-Y.
Laval
,
M.
Zak
, and
C.
Delamarre
,
Philos. Mag.
86
,
2147
(
2006
).
69.
M. I.
Richard
,
T. U.
Schülli
,
E.
Wintersberger
,
G.
Renaud
, and
G.
Bauer
,
Thin Solid Films
508
,
213
(
2006
).
70.
T. U.
Schülli
,
M. I.
Richard
,
G.
Renaud
,
V.
Favre-Nicolin
,
E.
Wintersberger
, and
G.
Bauer
,
Appl. Phys. Lett.
89
,
143114
(
2006
).
71.
M. Ya.
Valakh
,
P. M.
Lytvyn
,
A. S.
Nikolenko
,
V. V.
Strelchuk
,
Z. F.
Krasilnik
,
D. N.
Lobanov
, and
A. V.
Novikov
,
Appl. Phys. Lett.
96
,
141909
(
2010
).
72.
M. S.
Leite
,
G.
Medeiros-Ribeiro
,
T. I.
Kamins
, and
R. S.
Williams
,
Phys. Rev. Lett.
98
,
165901
(
2007
).
73.
V. A.
Shchukin
,
N. N.
Ledentsov
,
P. L.
Kop'evl
, and
D.
Bimberg
,
Phys. Rev. Lett.
75
,
2968
(
1995
).
You do not currently have access to this content.