The incorporation of N into MBE grown GaNSb and GaInNSb is investigated. Measurements of the N fraction in GaNSb show the familiar linear dependence on inverse growth rate, followed by a departure from this at low growth rates; a similar behaviour is observed for GaInNSb. Unexpectedly, the point at which there is a departure from this linear behaviour is found to be extended to lower growth rates by the addition of small amounts of In. These results are compared to a kinetic theory-based model from which it is postulated that the change in behaviour can be attributed to an In-induced change in the characteristic surface residence lifetime of the N atoms. In addition, a method is demonstrated for growing GaInNSb lattice-matched to GaSb(001) for compositions with band gaps covering the 2–5 μm region.

1.
Dilute Nitride Semiconductors
, edited by
M.
Henini
(
Elsevier
,
Amsterdam
,
2005
).
2.
Physics and Applications of Dilute Nitrides
, edited by
I.
Buyanova
and
W.
Chen
(
Taylor and Francis
,
New York
,
2004
).
3.
L.
Vegard
,
Z. Phys. A: Hadrons Nucl.
5
,
17
(
1921
).
4.
P. H.
Jefferson
,
L.
Buckle
,
B. R.
Bennett
,
T. D.
Veal
,
D.
Walker
,
N. R.
Wilson
,
L. F. J.
Piper
,
P. A.
Thomas
,
T.
Ashley
, and
C.
McConville
,
J. Cryst. Growth
304
,
338
(
2007
).
5.
A.
Lindsay
and
E. P.
O'Reilly
,
Solid State Commun.
118
,
313
(
2001
).
6.
A.
Lindsay
and
E. P.
O'Reilly
, “Parameters from tight binding calculations for 5 band k.p Hamiltonian for GaNxSb1-x,” private communication (
2004
).
7.
A.
Lindsay
,
E. P.
O'Reilly
,
A.
Andreev
, and
T.
Ashley
,
Phys. Rev. B
77
,
165205
(
2008
).
8.
T. D.
Veal
,
L. F. J.
Piper
,
S.
Jollands
,
B. R.
Bennett
,
P. H.
Jefferson
,
P. A.
Thomas
,
C. F.
McConville
,
B. N.
Murdin
,
L.
Buckle
,
G. W.
Smith
, and
T.
Ashley
,
Appl. Phys. Lett.
87
,
132101
(
2005
).
9.
P. H.
Jefferon
,
T. D.
Veal
,
L. F. J.
Piper
,
B. R.
Bennett
,
B. N.
Murdin
,
L.
Buckle
,
G. W.
Smith
, and
T.
Ashley
,
Appl. Phys. Lett.
89
,
111921
(
2006
).
10.
L.
Buckle
,
B. R.
Bennett
,
S.
Jollands
,
T. D.
Veal
,
N. R.
Wilson
,
B. N.
Murdin
,
C. F.
McConville
, and
T.
Ashley
,
J. Cryst. Growth
278
,
188
(
2005
).
11.
M. J.
Ashwin
,
T. D.
Veal
,
J. J.
Bomphrey
,
I. R.
Dunn
,
D.
Walker
,
P. A.
Thomas
, and
T. S.
Jones
,
AIP Adv.
1
,
032159
(
2011
).
12.
H. P.
Nair
,
A. M.
Crook
,
K. M.
Yu
, and
S. R.
Bank
,
Appl. Phys. Lett.
100
,
021103
(
2012
).
13.
V. A.
Odnoblyudov
,
A. R.
Kovsh
,
A. E.
Zhukov
,
N. A.
Maleev
,
E. S.
Semenova
, and
V. M.
Ustinov
,
Semiconductors
35
,
533
(
2001
).
14.
V. A.
Odnoblyudov
,
A. R.
Kovsh
,
A. E.
Zhukov
,
N. A.
Maleev
,
E. S.
Semenova
, and
V. M.
Ustinov
,
Semicond. Sci. Technol.
16
,
831
(
2001
).
15.
Z.
Pan
,
W. Z. L. H.
Li
,
Y. W.
Lin
, and
R. H.
Wu
,
Appl. Phys. Lett.
77
,
214
(
2000
).
16.
Q. D.
Zhuang
,
A. M. R.
Godenir
,
A.
Krier
,
K. T.
Lai
, and
S. K.
Haywood
,
J. Appl. Phys.
103
,
063520
(
2008
).
17.
P. H.
Jefferson
,
L.
Buckle
,
D.
Walker
,
T. D.
Veal
,
S.
Coomber
,
P. A.
Thomas
,
T.
Ashley
, and
C. F.
McConville
,
Phys. Status Solidi (RRL)
1
,
104
(
2007
).
18.
D. J.
Friedman
,
J. F.
Geisz
,
S. R.
Kurtz
, and
J. M.
Olson
,
J. Cryst. Growth
195
,
438
(
1998
).
19.
J. C.
Harmand
,
G.
Ungaro
,
L.
Largeau
, and
G. L.
Roux
,
Appl. Phys. Lett.
77
,
2482
(
2000
).
20.
C. E. C.
Wood
,
D.
Desimone
,
K.
Singer
, and
G. W.
Wicks
,
J. Appl. Phys.
53
,
4230
(
1982
).
21.
W.
Li
,
M.
Pessa
, and
J.
Likonen
,
Appl. Phys. Lett.
78
,
2864
(
2001
).
22.
S. G.
Spruytte
,
C. W.
Coldren
,
J. S.
Harris
,
W.
Wampler
,
P.
Krispin
,
K.
Ploog
, and
M. C.
Larson
,
J. Appl. Phys.
89
,
4401
(
2001
).
23.
W. J.
Fan
,
S. F.
Yoon
,
T. K.
Ng
,
S. Z.
Wang
,
W. K.
Loke
,
T.
Liu
, and
A.
Wee
,
Appl. Phys. Lett.
80
,
4136
(
2002
).
24.
T. A.
Nilsen
,
M.
Breivik
,
E.
Selvig
, and
B. O.
Fimland
,
J. Cryst. Growth
311
,
1688
(
2009
).
25.
X.
Marcadet
,
A.
Fily
,
S.
Collin
,
J. P.
Landesman
,
M.
Larive
,
J.
Olivier
, and
J.
Nagle
,
J. Cryst. Growth
201/202
,
284
(
1999
).
You do not currently have access to this content.