We have investigated the carrier dynamics in multilevel intermediate-band solar cells (IBSCs) by solving the Poisson equation, the continuity equations of electrons and holes, and the balance equation of IBs self-consistently. The efficiencies of 6-level IBSCs have stronger dependence on the doping concentration than those of 3-level IBSCs. For non-optimal doping conditions under 1 sun, the efficiencies of 6-level IBSCs can be inferior to those of 3-level IBSCs and even single junction solar cells (i.e., 2-level IBSC). The reasons for this are that multiple IBs in 6-level IBSCs limit their ability to produce currents and the combinations of the energy bandgaps are not optimized for doping concentrations. On the other hand, at around half occupation of electrons in the IBs, the energy conversion efficiencies of IBSCs are maximized under any sun concentrations. The efficiency of 6-level IBSCs has a maximum (66% under 1000 suns) approaching the thermodynamic upper limit, which is similar to the case of 3-level IBSCs. These results indicate the importance of optimizing the doping concentrations in the IB regions of the 6-level IBSCs.

1.
A.
Luque
and
A.
Martí
,
Phys. Rev. Lett.
78
,
5014
5017
(
1997
).
2.
T.
Nozawa
and
Y.
Arakawa
,
Appl. Phys. Lett.
98
,
171108
(
2011
).
3.
W.
Shockley
and
H. J.
Queisser
,
J. Appl. Phys.
32
,
510
(
1961
).
4.
Y.
Arakawa
and
H.
Sakaki
,
Appl. Phys. Lett.
40
,
939
941
(
1982
).
5.
D. R.
Morihara
,
D.
Bordel
,
K.
Tanabe
,
Y.
Wakayama
,
M.
Nishioka
, and
Y.
Arakawa
,
Appl. Phys. Lett.
96
,
203507
(
2010
).
6.
Y.
Okada
,
R.
Oshima
, and
A.
Takata
,
J. Appl. Phys.
106
,
024306
(
2009
).
7.
K. A.
Sablon
,
J. W.
Little
,
V.
Mitin
,
A.
Sergeev
,
N.
Vagidov
, and
K.
Reinhardt
,
Nano Lett.
11
,
2311
2317
(
2011
).
8.
C. G.
Bailey
,
D. V.
Forbes
,
S. J.
Polly
,
R. P.
Raffaelle
,
Z. S.
Bittner
,
Y.
Dai
,
C.
Mackos
, and
S. M.
Hubbard
,
IEEE J. Photovoltaics
2
,
269
275
(
2012
).
9.
T.
Sugaya
,
O.
Numakami
,
R.
Oshima
,
S.
Furue
,
H.
Komaki
,
T.
Amano
,
K.
Matsubara
,
Y.
Okano
, and
S.
Niki
,
Energy Environ. Sci.
5
,
6233
(
2012
).
10.
K.
Tanabe
,
K.
Watanabe
, and
Y.
Arakawa
,
Appl. Phys. Lett.
100
,
192102
(
2012
).
11.
S. A.
Blokhin
,
A. V.
Sakharov
,
A. M.
Nadtochy
,
A. S.
Pauysov
,
M. V.
Maximov
,
N. N.
Ledentsov
,
A. R.
Kovsh
,
S. S.
Mikhrin
,
V. M.
Lantratov
,
S. A.
Mintairov
,
N. A.
Kaluzhniy
, and
M. Z.
Shvarts
,
Semiconductors
43
,
514
518
(
2009
).
12.
R. B.
Laghumavarapu
,
M.
El-Emawy
,
N.
Nuntawong
,
A.
Moscho
,
L. F.
Lester
, and
D. L.
Huffaker
,
Appl. Phys. Lett.
91
,
243115
(
2007
).
13.
K.
Tanabe
,
D.
Guimard
,
D.
Bordel
, and
Y.
Arakawa
,
Appl. Phys. Lett.
100
,
193905
(
2012
).
14.
K. W. J.
Barnham
,
I.
Ballard
,
C.
Rohr
,
J. P.
Connolly
,
N. J.
Ekins-Daukes
,
B. G.
Kluftinger
, and
J.
Nelson
,
Physica E
14
,
27
36
(
2002
).
15.
M.
Mazzer
,
K. W. J.
Barnham
,
I. M.
Ballard
,
A.
Bessiere
,
A.
Ioannides
,
D. C.
Johnson
,
M. C.
Lynch
,
T. N. D.
Tibbits
,
J. S.
Roberts
,
G.
Hill
, and
C.
Calder
,
Thin Solid Films
511
,
76
83
(
2006
).
16.
A. S.
Lin
and
J. D.
Phillips
,
IEEE Trans. Electron Devices
56
,
3168
3174
(
2009
).
17.
K.
Yoshida
,
Y.
Okada
, and
N.
Sano
,
Appl. Phys. Lett.
97
,
133503
(
2010
).
18.
K.
Yoshida
,
Y.
Okada
, and
N.
Sano
,
J. Appl. Phys.
112
,
084510
(
2012
).
19.
R. W.
Peng
,
M.
Mazzer
, and
K. W. J.
Barnham
,
Appl. Phys. Lett.
83
,
770
(
2003
).
20.
A. S.
Brown
and
M. A.
Green
,
J. Appl. Phys.
94
,
6150
(
2003
).
21.
A.
Luque
,
P. G.
Linares
,
E.
Antolín
,
E.
Cánovas
,
C. D.
Farmer
,
C. R.
Stanley
, and
A.
Martí
,
Appl. Phys. Lett.
96
,
013501
(
2010
).
22.
J.
Tatebayashi
,
Y.
Ota
,
S.
Ishida
,
M.
Nishioka
,
S.
Iwamoto
, and
Y.
Arakawa
,
Appl. Phys. Lett.
100
,
263101
(
2012
).
23.
J.
Tatebayashi
,
Y.
Ota
,
S.
Ishida
,
M.
Nishioka
,
S.
Iwamoto
, and
Y.
Arakawa
,
J. Cryst. Growth
370
,
299
302
(
2013
).
24.
R.
Strandberg
and
T. W.
Reenaas
,
J. Appl. Phys.
105
,
124512
(
2009
).
You do not currently have access to this content.