The key process parameters of UV roll-to-roll nanoimprint lithography are identified from an analysis of the fluid, curing, and peeling dynamics. The process includes merging of droplets of imprint material, curing of the imprint material from a viscous liquid to elastic solid resist, and pattern replication and detachment of the resist from template. The time and distances on the web or rigid substrate over which these processes occur are determined as function of the physical properties of the uncured liquid, the cured solid, and the roller configuration. The upper convected Maxwell equation is used to model the viscoelastic liquid and to calculate the force on the substrate and the torque on the roller. The available exposure time is found to be the rate limiting parameter and it is O(Rho/uo), where R is the radius of the roller, ho is minimum gap between the roller and web, and uo is the velocity of the web. The residual layer thickness of the resist should be larger than the gap between the roller and the substrate to ensure complete feature filling and optimal pattern replication. For lower residual layer thickness, the droplets may not merge to form a continuous film for pattern transfer.

1.
H.
Tan
,
A.
Gilbertson
, and
S. Y.
Chou
,
J. Vac. Sci. Technol. B
16
,
3926
(
1998
).
2.
A. L.
Vig
,
T.
Makela
,
P.
Majander
,
V.
Lambertini
,
J.
Ahopelto
, and
A.
Kristensen
,
J. Micromech. Microeng.
21
,
035006
(
2011
).
3.
M. G.
Kang
,
H. J.
Park
,
S. H.
Ahn
, and
L. J.
Guo
,
Sol. Energy Mater. Sol. Cells
94
,
1179
(
2010
).
4.
L. J.
Guo
,
S. H.
Ahn
, and
J. S.
Kim
,
J. Vac. Sci. Technol. B
25
,
2388
(
2007
).
5.
P. C.
Kao
,
S. Y.
Chu
,
C. Y.
Zhan
,
L. C.
Hsu
, and
W. C.
Liao
,
J. Vac. Sci. Technol. B
24
,
1278
(
2006
).
6.
M. D.
Fagan
,
B. H.
Kim
, and
D. G.
Yao
,
Adv. Polym. Technol.
28
,
246
(
2009
).
7.
L. P.
Yeo
,
S. H.
Ng
,
Z. F.
Wang
,
H. M.
Xia
,
Z. P.
Wang
,
V. S.
Thang
,
Z. W.
Zhong
, and
N. F.
de Rooij
,
J. Micromech. Microeng.
20
,
015017
(
2010
).
8.
S.
Ahn
,
J.
Cha
,
H.
Myung
,
S. M.
Kim
, and
S.
Kang
,
Appl. Phys. Lett.
89
,
213101
(
2006
).
9.
A.
Bessonov
,
J. W.
Seo
,
J. G.
Kim
,
E. S.
Hwang
,
J. W.
Lee
,
J. W.
Cho
,
D. J.
Kim
, and
S.
Lee
,
Microelectron. Eng.
88
,
2913
(
2011
).
10.
L. J.
Guo
and
S. H.
Ahn
,
Adv. Mater.
20
,
2044
(
2008
).
11.
L. J.
Guo
and
S. H.
Ahn
,
ACS Nano
3
,
2304
(
2009
).
12.
A.
Jeans
,
M.
Almanza-Workman
,
R.
Cobene
,
R.
Elder
,
R.
Garcia
,
F.
Gomez-Pancorbo
,
W.
Jackson
,
M.
Jam
,
H. J.
Kim
,
O.
Kwon
,
H.
Luo
,
J.
Maltabes
,
P.
Mei
,
C.
Perlov
,
M.
Smith
,
C.
Taussig
,
F.
Jeffrey
,
S.
Braymen
,
J.
Hauschildt
,
K.
Junge
,
D.
Larson
, and
D.
Stieler
, “
Alternative lithographic technologies Ii
,”
Proc. SPIE
7637
,
763719
(
2010
).
13.
J. J.
Dumond
,
K. A.
Mahabadi
,
Y. S.
Yee
,
C.
Tan
,
J. Y.
Fuh
,
H. P.
Lee
, and
H. Y.
Low
,
Nanotechnology
23
,
485310
(
2012
).
14.
C. H.
Chuang
,
S. W.
Tsai
,
J. F.
Lin
, and
C. P.
Chen
,
Jpn. J. Appl. Phys.
50
,
06GK01
(
2011
).
15.
J. J.
Dumond
and
H. Y.
Low
,
J. Vac. Sci. Technol. B
30
,
010801
(
2012
).
16.
S. M.
Seo
,
T. I.
Kim
, and
H. H.
Lee
,
Microelectron. Eng.
84
,
567
(
2007
).
17.
H.
Lim
,
K. B.
Choi
,
G.
Kim
,
S.
Park
,
J.
Ryu
, and
J.
Lee
,
Microelectron. Eng.
88
,
2017
(
2011
).
18.
S. W.
Youn
,
M.
Iwara
,
H.
Goto
,
M.
Takahashi
, and
R.
Maeda
,
J. Mater. Process. Technol.
202
,
76
(
2008
).
19.
J. T.
Wu
and
S. Y.
Yang
,
J. Micromech. Microeng.
20
,
085038
(
2010
).
20.
C. Y.
Chang
,
S. Y.
Yang
, and
J. L.
Sheh
,
Microsystem Technol.
12
,
754
(
2006
).
21.
X. D.
Ye
,
Y. C.
Ding
,
Y. G.
Duan
,
H. Z.
Liu
, and
B. H.
Lu
,
J. Vac. Sci. Technol. B
27
,
2091
(
2009
).
22.
I. J.
Hill
and
W. G.
Sawyer
,
Tribol. Lett.
37
,
453
(
2010
).
23.
O. H.
Mahrenholtz
,
Archive Appl. Mech.
80
,
93
(
2010
).
24.
Y.
Otsubo
,
T.
Amari
, and
K.
Watanabe
,
J. Appl. Polym. Sci.
29
,
4071
(
1984
).
25.
S. S.
Lee
,
A.
Luciani
, and
J. A. E.
Manson
,
Prog. Org. Coat.
38
,
193
(
2000
).
26.
B. J.
Love
and
F.
Piguet-Ruinet
,
J. Appl. Polym. Sci.
106
,
3605
(
2007
).
27.
F. A.
Houle
,
A.
Fornof
,
D. C.
Miller
,
S.
Raoux
,
H.
Truong
,
E.
Simonyi
,
C.
Jahnes
, and
S.
Rossnagel
, “
Emerging lithographic technologies XII, Parts 1 and 2
,”
Proc. SPIE
6921
,
B9210
(
2008
).
28.
D. J.
O'Brien
,
P. T.
Mather
, and
S. R.
White
,
J. Compos. Mater.
35
,
883
(
2001
).
29.
Y.
Otsubo
,
T.
Amari
, and
K.
Watanabe
,
J. Appl. Polym. Sci.
31
,
323
(
1986
).
30.
B. J.
Love
,
F. P.
Ruinet
, and
F.
Teyssandier
,
J. Polym. Sci. Part B: Polym. Phys.
46
,
2319
(
2008
).
31.
X. K.
Li
,
Y. S.
Luo
,
Y. W.
Qi
, and
R.
Zhang
,
Appl. Math. Model.
35
,
2309
(
2011
).
32.
J. A.
Tichy
,
Trans. ASME J. Tribol.
118
,
344
(
1996
).
33.
S.
Ahn
,
M.
Choi
,
H.
Bae
,
J.
Lim
,
H.
Myung
,
H.
Kim
, and
S.
Kang
,
Jpn. J. Appl. Phys. Part 1
46
,
5478
(
2007
).
34.
C. W.
Liu
,
C. H.
Lee
, and
S. C.
Lin
,
Opt. Express
19
,
11299
(
2011
).
35.
S. H.
Ahn
and
L. J.
Guo
, “
Advanced fabrication technologies for micro/nano optics and photonics Ii
,”
Proc. SPIE
7205
,
72050U
(
2009
).
36.
H. D.
Rowland
,
W. P.
King
,
A. C.
Sun
, and
P. R.
Schunk
,
J. Vac. Sci. Technol. B
23
,
2958
(
2005
).
37.
H. D.
Rowland
and
W. P.
King
,
J. Micromech. Microeng.
14
,
1625
(
2004
).
38.
H. D.
Rowland
,
A. C.
Sun
,
P. R.
Schunk
, and
W. P.
King
,
J. Micromech. Microeng.
15
,
2414
(
2005
).
39.
S.
Chauhan
,
F.
Palmieri
,
R. T.
Bonnecaze
, and
C. G.
Willson
,
J. Vac. Sci. Technol. B
27
,
1926
(
2009
).
40.
H. C.
Scheer
and
H.
Schulz
,
Microelectron. Eng.
56
,
311
(
2001
).
41.
H. C.
Scheer
,
Proc. SPIE, Micro-Optics
8428
,
842802
(
2012
).
You do not currently have access to this content.