The electronic density of states in metal oxide semiconductors like amorphous zinc oxide (a-ZnO) and its ternary and quaternary oxide alloys with indium, gallium, tin, or aluminum are different from amorphous silicon, or disordered materials such as pentacene, or P3HT. Many ZnO based semiconductors exhibit a steep decaying density of acceptor tail states (trap DOS) and a Fermi level (EF) close to the conduction band energy (EC). Considering thin film transistor (TFT) operation in accumulation mode, the quasi Fermi level for electrons (Eq) moves even closer to EC. Classic analytic TFT simulations use the simplification ECEF>severalkT and cannot reproduce exponential tail states with a characteristic energy smaller than 1/2 kT. We demonstrate an analytic model for tail and deep acceptor states, valid for all amorphous metal oxides and include the effect of trap assisted hopping instead of simpler percolation or mobility edge models, to account for the observed field dependent mobility.

1.
L.
Lan
,
N.
Xiong
,
P.
Xiao
,
W.
Shi
,
M.
Xu
,
W.
Xu
,
R.
Yao
, and
J.
Peng
, “
Letter: A low-cost low-temperature thin-film-transistor backplane based on oxide semiconductor
,”
J. Soc. Inf. Disp.
20
,
175
177
(
2012
).
2.
C.-Y.
Lin
,
C.-W.
Chien
,
C.-H.
Wu
,
H.-H.
Hsieh
,
C.-C.
Wu
,
Y.-H.
Yeh
,
C.-C.
Cheng
,
C.-M.
Lai
, and
M.-J.
Yu
, “
Top-gate staggered a-IGZO TFTS adopting the bilayer gate insulator for driving amoled
,”
IEEE Trans. Electron. Devices
59
,
1701
1708
(
2012
).
3.
S.
Nakano
,
N.
Saito
,
K.
Miura
,
T.
Sakano
,
T.
Ueda
,
K.
Sugi
,
H.
Yamaguchi
,
I.
Amemiya
,
M.
Hiramatsu
, and
A.
Ishida
, “
Highly reliable a-IGZO TFTS on a plastic substrate for flexible amoled displays
,”
J. Soc. Inf. Disp.
20
,
493
498
(
2012
).
4.
E.
Fortunato
,
P.
Barquinha
, and
R.
Martins
, “
Oxide semiconductor thin-film transistors: A review of recent advances
,”
Adv. Mater.
24
,
2945
2986
(
2012
).
5.
J.
Smith
,
A.
Bashir
,
G.
Adamopoulos
,
J. E.
Anthony
,
D. D. C.
Bradley
,
M.
Heeney
,
I.
McCulloch
, and
T. D.
Anthopoulos
, “
Air-stable solution-processed hybrid transistors with hole and electron mobilities exceeding 2 cm2/vs
,”
Adv. Mater.
22
,
3598
3602
(
2010
).
6.
T.
Kamiya
,
K.
Nomura
, and
H.
Hosono
, “
Present status of amorphous In-Ga-Zn-O thin-film transistors
,”
Sci. Tech. Adv. Mater.
11
,
044305
(
2010
).
7.
V.
Subramanian
,
T.
Bakhishev
,
D.
Redinger
, and
S. K.
Volkman
, “
Solution-processed zinc oxide transistors for low-cost electronics applications
,”
J. Disp. Technol.
5
,
525
530
(
2009
).
8.
G.
Adamopoulos
,
A.
Bashir
,
W. P.
Gillin
,
S.
Georgakopoulos
,
M.
Shkunov
,
M. A.
Baklar
,
N.
Stingelin
,
D. D. C.
Bradley
, and
T. D.
Anthopoulos
, “
Structural and electrical characterization of ZnO films grown by spray pyrolysis and their application in thin-film transistors
,”
Adv. Funct. Mater.
21
,
525
531
(
2011
).
9.
U.
Ozgur
,
D.
Hofstetter
, and
H.
Morkoc
, “
ZnO devices and applications: A review of current status and future prospects
,”
IEEE J. Proc.
98
,
1255
1268
(
2010
).
10.
J.-Y.
Kwon
,
D.-J.
Lee
, and
K.-B.
Kim
, “
Review paper: Transparent amorphous oxide semiconductor thin film transistor
,”
Electron. Mater. Lett.
7
,
1
11
(
2011
).
11.
J.
Robertson
, “
Properties and doping limits of amorphous oxide semiconductors
,”
J. Non-Cryst. Solids
358
,
2437
2442
(
2012
)
J.
Robertson
, in Proceedings of the 24th International Conference on Amorphous and Nanocrystalline Semiconductors (ICANS 24), Nara, Japan, August 21–26,
2011
.
12.
C. E.
Small
,
S.
Chen
,
J.
Subbiah
,
C. M.
Amb
,
S.-W.
Tsang
,
T.-H.
Lai
,
J. R.
Reynolds
, and
F.
So
, “
High-efficiency inverted dithienogermole-thienopyrrolodione-based polymer solar cells
,”
Nat. Photon.
6
,
115
120
(
2012
).
13.
Z.
Liang
,
Q.
Zhang
,
O.
Wiranwetchayan
,
J.
Xi
,
Z.
Yang
,
K.
Park
,
C.
Li
, and
G.
Cao
, “
Effects of the morphology of a ZnO buffer layer on the photovoltaic performance of inverted polymer solar cells
,”
Adv. Funct. Mater.
22
,
2194
2201
(
2012
).
14.
M.
Lu
,
P.
de Bruyn
,
H. T.
Nicolai
,
G.-J. A. H.
Wetzelaer
, and
P. W. M.
Blom
, “
Hole-enhanced electron injection from ZnO in inverted polymer light-emitting diodes
,”
Org. Electron.
13
,
1693
1699
(
2012
).
15.
S.
Schumann
,
R.
Da Campo
,
B.
Illy
,
A. C.
Cruickshank
,
M. A.
McLachlan
,
M. P.
Ryan
,
D. J.
Riley
,
D. W.
McComb
, and
T. S.
Jones
, “
Inverted organic photovoltaic devices with high efficiency and stability based on metal oxide charge extraction layers
,”
J. Mater. Chem.
21
,
2381
2386
(
2011
).
16.
A.
Colsmann
,
A.
Puetz
,
A.
Bauer
,
J.
Hanisch
,
E.
Ahlswede
, and
U.
Lemmer
, “
Efficient semi-transparent organic solar cells with good transparency color perception and rendering properties
,”
Adv. Energy Mater.
1
,
599
603
(
2011
).
17.
Y.
Sun
,
J. H.
Seo
,
C. J.
Takacs
,
J.
Seifter
, and
A. J.
Heeger
, “
Inverted polymer solar cells integrated with a low-temperature-annealed sol-gel-derived ZnO film as an electron transport layer
,”
Adv. Mater.
23
,
1679
(
2011
).
18.
H.
Oh
,
J.
Krantz
,
I.
Litzov
,
T.
Stubhan
,
L.
Pinna
, and
C. J.
Brabec
, “
Comparison of various sol-gel derived metal oxide layers for inverted organic solar cells
,”
Sol. Energy Mater. Sol. C
95
,
2194
2199
(
2011
).
19.
P.
de Bruyn
,
D. J. D.
Moet
, and
P. W. M.
Blom
, “
A facile route to inverted polymer solar cells using a precursor based zinc oxide electron transport layer
,”
Org. Electron.
11
,
1419
1422
(
2010
).
20.
X.
Bulliard
,
S. G.
Ihn
,
S.
Yun
,
Y.
Kim
,
D.
Choi
,
J. Y.
Choi
,
M.
Kim
,
M.
Sim
,
J. H.
Park
,
W.
Choi
, and
K.
Cho
, “
Enhanced performance in polymer solar cells by surface energy control
,”
Adv. Funct. Mater.
20
,
4381
4387
(
2010
).
21.
F. C.
Krebs
, “
All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps
,”
Org. Electron.
10
,
761
768
(
2009
).
22.
A. K. K.
Kyaw
,
X. W.
Sun
,
C. Y.
Jiang
,
G. Q.
Lo
,
D. W.
Zhao
, and
D. L.
Kwong
, “
An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated moo3 hole selective layer
,”
Appl. Phys. Lett.
93
,
221107
(
2008
).
23.
H.
Hosono
, “
Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application
,”
J. Non-Cryst. Solids
352
,
851
858
(
2006
).
24.
C. G.
Van de Walle
, “
Hydrogen as a cause of doping in zinc oxide
,”
Phys. Rev. Lett.
85
,
1012
1015
(
2000
).
25.
A.
Janotti
and
C. G.
Van de Walle
, “
Fundamentals of zinc oxide as a semiconductor
,”
Rep. Prog. Phys.
72
,
126501
(
2009
).
26.
M. J.
Powell
, “
Analysis of field-effect-conductance measurements on amorphous semiconductors
,”
Philos. Mag. B
43
,
93
103
(
1981
).
27.
M.
Shur
and
M.
Hack
, “
Physics of amorphous-silicon based alloy field-effect transistors
,”
J. Appl. Phys.
55
,
3831
3842
(
1984
).
28.
T.
Leroux
, “
Static and dynamic analysis of amorphous-silicon field-effect transistors
,”
Solid-State Electron.
29
,
47
58
(
1986
).
29.
K.
Khakzar
and
E. H.
Lueder
, “
Modeling of amorphous-silicon thin-film transistors for circuit simulations with spice
,”
IEEE Trans. Electron Devices
39
,
1428
1434
(
1992
).
30.
Y. T.
Tsai
,
K. D.
Hong
, and
Y. L.
Yuan
, “
An efficient analytical model for calculating trapped charge in amorphous-silicon
,”
IEEE Trans. Comput. Aid. D
13
,
725
728
(
1994
).
31.
M. C. J. M.
Vissenberg
and
M.
Matters
, “
Theory of the field-effect mobility in amorphous organic transistors
,”
Phys. Rev. B
57
,
12964
12967
(
1998
).
32.
G.
Horowitz
,
M. E.
Hajlaoui
, and
R.
Hajlaoui
, “
Temperature and gate voltage dependence of hole mobility in polycrystalline oligothiophene thin film transistors
,”
J. Appl. Phys.
87
,
4456
4463
(
2000
).
33.
A. R.
Volkel
,
R. A.
Street
, and
D.
Knipp
, “
Carrier transport and density of state distributions in pentacene transistors
,”
Phys. Rev. B
66
,
195336
(
2002
).
34.
S.
Scheinert
and
G.
Paasch
, “
Fabrication and analysis of polymer field-effect transistors
,”
Phys. Status Solidi A
201
,
1263
1301
(
2004
).
35.
D. V.
Lang
,
X.
Chi
,
T.
Siegrist
,
A. M.
Sergent
, and
A. P.
Ramirez
, “
Amorphouslike density of gap states in single-crystal pentacene
,”
Phys. Rev. Lett.
93
,
086802
(
2004
).
36.
N.
Tessler
and
Y.
Roichman
, “
Amorphous organic molecule/polymer diodes and transistors—comparison between predictions based on Gaussian or exponential density of states
,”
Org. Electron.
6
,
200
210
(
2005
).
37.
G.
Paasch
and
S.
Scheinert
, “
Charge carrier density of organics with Gaussian density of states: Analytical approximation for the gauss-fermi integral
,”
J. Appl. Phys.
107
,
104501
(
2010
).
38.
M.
Kimura
,
T.
Nakanishi
,
K.
Nomura
,
T.
Kamiya
, and
H.
Hosono
, “
Trap densities in amorphous-In-Ga-Zn-O(4) thin-film transistors
,”
Appl. Phys. Lett.
92
,
133512
(
2008
).
39.
J.-H.
Park
,
K.
Jeon
,
S.
Lee
,
S.
Kim
,
S.
Kim
,
I.
Song
,
C. J.
Kim
,
J.
Park
,
Y.
Park
,
D. M.
Kim
, and
D. H.
Kim
, “
Extraction of density of states in amorphous gain ZnO thin-film transistors by combining an optical charge pumping and capacitance-voltage characteristics
,”
IEEE Electron Device Lett.
29
,
1292
1295
(
2008
).
40.
J.-H.
Park
,
S.
Lee
,
K.
Jeon
,
S.
Kim
,
S.
Kim
,
J.
Park
,
I.
Song
,
C. J.
Kim
,
Y.
Park
,
D. M.
Kim
, and
D. H.
Kim
, “
Density of states-based dc I-V model of amorphous gallium-indium-zinc-oxide thin-film transistors
,”
IEEE Electron Device Lett.
30
,
1069
1071
(
2009
).
41.
J.-H.
Park
,
K.
Jeon
,
S.
Lee
,
S.
Kim
,
S.
Kim
,
I.
Song
,
J.
Park
,
Y.
Park
,
C. J.
Kim
,
D. M.
Kim
, and
D. H.
Kim
, “
Self-consistent technique for extracting density of states in amorphous In-Ga-Zn-O thin film transistors
,”
J. Electrochem. Soc.
157
,
H272
H277
(
2010
).
42.
J.
Jeong
,
J. K.
Jeong
,
J.-S.
Park
,
Y.-G.
Mo
, and
Y.
Hong
, “
Meyer-neldel rule and extraction of density of states in amorphous indium-gallium-zinc-oxide thin-film transistor by considering surface band bending
,”
Jpn. J. Appl. Phys., Part 1
49
,
03CB02
(
2010
).
43.
M.
Grunewald
,
P.
Thomas
, and
D.
Wurtz
, “
A simple scheme for evaluating field-effect data
,”
Phys. Status Solidi B
100
,
K139
K143
(
1980
).
44.
M.
Grunewald
,
K.
Weber
,
W.
Fuhs
, and
P.
Thomas
, “
Field-effect studies on a-Si-H films
,”
J. Phys. Colloques
42
,
C4
523
C4
526
(
1981
).
45.
Y. W.
Jeon
,
S.
Kim
,
S.
Lee
,
D. M.
Kim
,
D. H.
Kim
,
J.
Park
,
C. J.
Kim
,
I.
Song
,
Y.
Park
,
U.-I.
Chung
,
J.-H.
Lee
,
B. D.
Ahn
,
S. Y.
Park
,
J.-H.
Park
, and
J. H.
Kim
, “
Subgap density-of-states-based amorphous oxide thin film transistor simulator (deaots)
,”
IEEE Trans. Electron Devices
57
,
2988
3000
(
2010
).
46.
K.
Abe
,
N.
Kaji
,
H.
Kumomi
,
K.
Nomura
,
T.
Kamiya
,
M.
Hirano
, and
H.
Hosono
, “
Simple analytical model of on operation of amorphous In-Ga-Zn-O thin-film transistors
,”
IEEE Trans. Electron Devices
58
,
3463
3471
(
2011
).
47.
P. T.
Erslev
,
E. S.
Sundholm
,
R. E.
Presley
,
D.
Hong
,
J. F.
Wager
, and
J. D.
Cohen
, “
Mapping out the distribution of electronic states in the mobility gap of amorphous zinc tin oxide
,”
Appl. Phys. Lett.
95
,
192115
(
2009
).
48.
K.
Nomura
,
T.
Kamiya
,
H.
Yanagi
,
E.
Ikenaga
,
K.
Yang
,
K.
Kobayashi
,
M.
Hirano
, and
H.
Hosono
, “
Subgap states in transparent amorphous oxide semiconductor, In-Ga-Zn-O, observed by bulk sensitive x-ray photoelectron spectroscopy
,”
Appl. Phys. Lett.
92
,
202117
(
2008
).
49.
S.
Bubel
,
N.
Mechau
,
H.
Hahn
, and
R.
Schmechel
, “
Trap states and space charge limited current in dispersion processed zinc oxide thin films
,”
J. Appl. Phys.
108
,
124502
(
2010
).
50.
S.
Bubel
,
N.
Mechau
, and
R.
Schmechel
, “
Electronic properties of polyvinylpyrrolidone at the zinc oxide nanoparticle surface
,”
J. Mater. Sci.
46
,
7776
7783
(
2011
).
51.
J.
Reemts
and
A.
Kittel
, “
Persistent photoconductivity in highly porous ZnO films
,”
J. Appl. Phys.
101
,
013709
(
2007
).
52.
K.
Thonke
,
M.
Schirra
,
R.
Schneider
,
A.
Reiser
,
G. M.
Prinz
,
M.
Feneberg
,
J.
Biskupek
,
U.
Kaiser
, and
R.
Sauer
, “
The role of stacking faults and their associated 0.13 eV acceptor state in doped and undoped ZnO layers and nanostructures
,”
Microelectron. J.
40
,
210
214
(
2009
).
53.
C.
Casteleiro
,
H. L.
Gomes
,
P.
Stallinga
,
L.
Bentes
,
R.
Ayouchi
, and
R.
Schwarz
, “
Study of trap states in zinc oxide (ZnO) thin films for electronic applications
,”
J. Non-Cryst. Solids
354
,
2519
2522
(
2008
).
54.
W. C.
Germs
,
W. H.
Adriaans
,
A. K.
Tripathi
,
W. S. C.
Roelofs
,
B.
Cobb
,
R. A. J.
Janssen
,
G. H.
Gelinck
, and
M.
Kemerink
, “
Charge transport in amorphous In-Ga-Zn-O thin-film transistors
,”
Phys. Rev. B
86
,
155319
(
2012
).
55.
R. L.
Hoffman
, “
ZnO-channel thin-film transistors: Channel mobility
,”
J. Appl. Phys.
95
,
5813
5819
(
2004
).
56.
F. J.
Garcia-Sanchez
and
A.
Ortiz-Conde
, “
An explicit analytic compact model for nanocrystalline zinc oxide thin-film transistors
,”
IEEE Trans. Electron Devices
59
,
46
50
(
2012
).
57.
D. C.
Look
, “
Quantitative analysis of surface donors in ZnO
,”
Surf. Sci.
601
,
5315
5319
(
2007
).
58.
M. W.
Allen
,
C. H.
Swartz
,
T. H.
Myers
,
T. D.
Veal
,
C. F.
McConville
, and
S. M.
Durbin
, “
Bulk transport measurements in ZnO: The effect of surface electron layers
,”
Phys. Rev. B
81
,
075211
(
2010
).
59.
H.
Yuan
,
H.
Shimotani
,
A.
Tsukazaki
,
A.
Ohtomo
,
M.
Kawasaki
, and
Y.
Iwasa
, “
High-density carrier accumulation in ZnO field-effect transistors gated by electric double layers of ionic liquids
,”
Adv. Funct. Mater.
19
,
1046
1053
(
2009
).
60.
S.
Thiemann
,
S.
Sachnov
,
S.
Porscha
,
P.
Wasserscheid
, and
J.
Zaumseil
, “
Ionic liquids for electrolyte-gating of ZnO field-effect transistors
,”
J. Phys. Chem. C
116
,
13536
13544
(
2012
).
61.
H.
Dittrich
,
N.
Karl
,
S.
Kück
, and
H.
Schock
, “
Amorphous silicon (a-Si) figures to density of localized gap states
,” in
Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology/Group III Condensed Matter
, edited by
O.
Madelung
,
U.
Rössler
, and
M.
Schulz
(
Springer
,
2000
), Vol.
41E
.
62.
S.
Lee
,
K.
Ghaffarzadeh
,
A.
Nathan
,
J.
Robertson
,
S.
Jeon
,
C.
Kim
,
I.-H.
Song
, and
U.-I.
Chung
, “
Trap-limited and percolation conduction mechanisms in amorphous oxide semiconductor thin film transistors
,”
Appl. Phys. Lett.
98
,
203508
(
2011
).
63.
A. F.
Kohan
,
G.
Ceder
,
D.
Morgan
, and
C. G.
Van de Walle
, “
First-principles study of native point defects in ZnO
,”
Phys. Rev. B
61
,
15019
15027
(
2000
).
64.
E. C.
Lee
,
Y. S.
Kim
,
Y. G.
Jin
, and
K. J.
Chang
, “
Compensation mechanism for n acceptors in ZnO
,”
Phys. Rev. B
64
,
085120
(
2001
).
65.
R.
Theissmann
,
S.
Bubel
,
M.
Sanlialp
,
C.
Busch
,
G.
Schierning
, and
R.
Schmechel
, “
High performance low temperature solution-processed zinc oxide thin film transistor
,”
Thin Solid Films
519
,
5623
5628
(
2011
).
66.
C.
Busch
,
R.
Theissmann
,
S.
Bubel
,
G.
Schierning
, and
R.
Schmechel
, “
Influence of the annealing atmosphere on solution based zinc oxide thin film transistors
,”
Mater. Proc.
1359
,
71
77
(
2011
).
67.
C.
Busch
,
S.
Bubel
,
R.
Theissmann
, and
R.
Schmechel
, “
Metal oxide thin-film transistors from nano particles and solutions
,” in
Nanoparticles from the Gas Phase
, edited by
A.
Lorke
,
M.
Winterer
,
R.
Schmechel
, and
C.
Schultz
(
Springer-Verlag
,
Berlin-Heidelberg
,
2012
), pp.
387
409
.
68.
W.
Shockley
, “
A unipolar field-effect transistor
,”
Proc. IRE
40
,
1365
1376
(
1952
).
69.
D.
Adler
,
L. P.
Flora
, and
S. D.
Senturia
, “
Electrical conductivity in disordered systems
,”
Solid State Commun.
12
,
9
12
(
1973
).
70.
J. Y. W.
Seto
, “
Electrical properties of polycrystalline silicon films
,”
J. Appl. Phys.
46
,
5247
5254
(
1975
).
71.
T.
Kamiya
,
K.
Nomura
, and
H.
Hosono
, “
Electronic structures above mobility edges in crystalline and amorphous In-Ga-Zn-O: Percolation conduction examined by analytical model
,”
J. Disp. Technol.
5
,
462
467
(
2009
).
72.
V.
Ambegaokar
,
B. I.
Halperin
, and
J. S.
Langer
, “
Hopping conductivity in disordered systems
,”
Phys. Rev. B
4
,
2612
(
1971
).
73.
K.
Makise
,
B.
Shinozaki
,
T.
Asano
,
K.
Mitsuishi
,
K.
Yano
,
K.
Inoue
, and
H.
Nakamura
, “
Relationship between variable range hopping transport and carrier density of amorphous In2O3-10 wt. % ZnO thin films
,”
J. Appl. Phys.
112
,
033716
(
2012
).
74.
S.
Bubel
and
R.
Schmechel
, “
Mechanical layer compaction for dispersion processed nanoparticulate zinc oxide thin film transistors
,”
Microelectron. Eng.
96
,
36
39
(
2012
).
75.
S.
Bubel
,
A.
Ringk
,
P.
Strohriegl
, and
R.
Schmechel
, “
n-type perylene to fill voids in solution processed nanoparticulate zinc oxide thin films
,”
Physica E
44
,
2124
2127
(
2012
).
76.
G.
Fortunato
,
D. B.
Meakin
,
P.
Migliorato
, and
P. G.
Lecomber
, “
Field-effect analysis for the determination of gap-state density and fermi-level temperature-dependence in polycrystalline silicon
,”
Philos. Mag. B
57
,
573
586
(
1988
).
77.
W. L.
Kalb
and
B.
Batlogg
, “
Calculating the trap density of states in organic field-effect transistors from experiment: A comparison of different methods
,”
Phys. Rev. B
81
,
035327
(
2010
).
78.
L.
Colalongo
, “
A new analytical model for amorphous-silicon thin-film transistors including tail and deep states
,”
Solid-State Electron.
45
,
1525
1530
(
2001
).
79.
W. B.
Joyce
and
R. W.
Dixon
, “
Analytic approximations for fermi energy of an ideal fermi gas
,”
Appl. Phys. Lett.
31
,
354
356
(
1977
).
80.
W. C.
Germs
,
K.
Guo
,
R. A. J.
Janssen
, and
M.
Kemerink
, “
Unusual thermoelectric behavior indicating a hopping to bandlike transport transition in pentacene
,”
Phys. Rev. Lett.
109
,
016601
(
2012
).
81.
N.
Mott
, “
The mobility edge since 1967
,”
J. Phys. C: Solid State Phys.
20
,
3075
(
1987
).
82.
B. L.
Yang
,
H.
Wong
, and
Y. C.
Cheng
, “
Modelling of trap-assisted electronic conduction in thin thermally nitrided oxide films
,”
Solid-State Electron.
39
,
385
390
(
1996
).
83.
H. C. F.
Martens
,
I. N.
Hulea
,
I.
Romijn
,
H. B.
Brom
,
W. F.
Pasveer
, and
M. A. J.
Michels
, “
Understanding the doping dependence of the conductivity of conjugated polymers: Dominant role of the increasing density of states and growing delocalization
,”
Phys. Rev. B
67
,
121203
(
2003
).
84.
R.
Coehoorn
,
W. F.
Pasveer
,
P. A.
Bobbert
, and
M. A. J.
Michels
, “
Charge-carrier concentration dependence of the hopping mobility in organic materials with Gaussian disorder
,”
Phys. Rev. B
72
,
155206
(
2005
).
85.
A.
Wood
,
M.
Giersig
,
M.
Hilgendorff
,
A.
Vilas-Campos
,
L. M.
Liz-Marzan
, and
P.
Mulvaney
, “
Size effects in ZnO: The cluster to quantum dot transition
,”
Aust. J. Chem.
56
,
1051
1057
(
2003
).
You do not currently have access to this content.