This work proposes a modification to Hardy's atomistic-to-continuum thermomechanical theory, so that it can more accurately conserve mass, momentum, and energy for non-equilibrium thermomechanical processes. The modification proposed is a new normalization rule for the localization function employed in the theory. The improved accuracy of the modified theory is demonstrated based on several molecular dynamics (MD) simulation examples of elastic and shock wave propagation in metals. Through the simulation results, it is also found that Hardy's theory remains valid to a large extent, regardless of the width of the localization function, the interatomic potential, and crystal structure, with and without ensemble averaging. The results from this work will help inject confidence in employing the modified Hardy's theory with the proposed modifications to analyze MD simulation results for non-equilibrium thermomechanical processes and pave the way for concurrent atomistic/continuum coupled simulations.

1.
D.
Frenkel
and
B.
Smit
,
in Understanding Molecular Simulation
, Computational Science Series (
Academic
,
New York
,
2001
).
2.
J. M.
Haile
,
Molecular Dynamics Simulation Elementary Methods
(
Wiley
,
New York
,
1992
).
3.
D. C.
Rapaport
,
The Art of Molecular Dynamics Simulation
(
Cambridge University Press
,
London
,
2004
).
4.
H. B.
Dhia
and
G.
Rateau
,
Int. J. Numer. Methods Eng.
62
,
1442
1462
(
2005
).
5.
S.
Prudhomme
,
H.
Ben Dhia
,
P. T.
Bauman
,
N.
Elkhodja
, and
J. T.
Oden
,
Comput. Methods Appl. Mech. Eng
197
,
3399
3409
(
2008
).
6.
S. P.
Xiao
and
T.
Belytschko
,
Comput. Methods Appl. Mech. Eng.
193
,
1645
1669
(
2004
).
7.
J.
Fish
and
W.
Chen
,
Comput. Methods Appl. Mech. Eng.
193
,
1693
1711
(
2004
).
8.
P. A.
Guidault
and
T.
Belytschko
,
Int. J. Numer. Methods Eng.
70
,
322
350
(
2007
).
9.
P. A.
Guidault
and
T.
Belytschko
,
Int. J. Numer. Methods Eng.
77
,
1566
1592
(
2009
).
10.
D. E.
Farrell
,
H. S.
Park
, and
W. K.
Liu
,
Int. J. Numer. Methods Eng.
71
,
583
605
(
2007
).
11.
P.
Aubertin
,
J.
Réthoré
, and
R.
de Borst
,
Int. J. Numer. Methods Eng.
78
,
1365
1386
(
2009
).
12.
G. J.
Wagner
and
W. K.
Liu
,
J. Comput. Phys.
190
,
249
274
(
2003
).
13.
A. C.
To
and
S.
Li
,
Phys. Rev. B
72
,
035414
(
2005
).
14.
S.
Li
,
X.
Liu
,
A.
Agrawal
, and
A. C.
To
,
Phys. Rev. B
74
,
045418
(
2006
).
15.
R. J. E.
Clausius
,
Philos. Mag.
40
,
122
127
(
1870
).
16.
J. C.
Maxwell
,
Trans. R. Soc. Edin.
XXVI
,
1
43
(
1870
).
17.
J. C.
Maxwell
,
Nature
10
,
477
480
(
1874
).
18.
R. W.
Smith
and
D. J.
Srolovitz
,
J. Appl. Phys.
79
,
1448
1457
(
1996
).
19.
S. Y.
Hu
,
Y. L.
Li
, and
K.
Watanabe
,
Modell. Simul. Mater. Sci. Eng.
7
,
641
(
1999
).
20.
M. F.
Horstemeyer
and
M. I.
Baskes
,
J. Eng. Mater. Technol.
121
,
114
119
(
1999
).
21.
G.
Marc
and
W. G.
McMillan
,
Adv. Chem. Phys.
58
,
209
361
(
1985
).
22.
A. K.
Subramaniyan
and
C. T.
Sun
,
Int. J. Solids Struct.
45
,
4340
4346
(
2008
).
23.
J. A.
Zimmerman
,
E. B.
Webb
 III
,
J. J.
Hoyt
,
R. E.
Jones
,
P. A.
Klein
, and
D. J.
Bammann
,
Modell. Simul. Mater. Sci. Eng.
12
,
S319
(
2004
).
24.
K. S.
Cheung
and
S.
Yip
,
J. Appl. Phys.
70
,
5688
5690
(
1991
).
25.
D. H.
Tsai
,
J. Chem. Phys.
70
,
1375
1382
(
1979
).
26.
M.
Zhou
,
Proc. R. Soc. London, Ser. A
459
,
2347
2392
(
2003
).
27.
M.
Zhou
,
Proc. R. Soc. London, Ser. A
461
,
3437
3472
(
2005
).
28.
Y.
Chen
,
J. Chem. Phys.
124
,
054113
(
2006
).
29.
A.
Murdoch
,
J. Elast.
88
,
113
140
(
2007
).
30.
E. B.
Webb
,
J. A.
Zimmermanand
, and
S. C.
Seel
,
Math. Mech. Solids
13
,
221
266
(
2008
).
31.
M.
Zhou
and
D. L.
McDowell
,
Philos. Mag. A.
82
,
2547
2574
(
2002
).
32.
J. F.
Lutsko
,
J. Appl. Phys.
64
,
1152
1154
(
1988
).
33.
M.
Anna
,
Modell. Simul. Mater. Sci. Eng.
9
,
327
(
2001
).
34.
J.
Cormier
,
J. M.
Rickman
, and
T. J.
Delph
,
J. Appl. Phys.
89
,
99
104
(
2001
).
35.
Z. H.
Sun
,
X. X.
Wang
,
A. K.
Soh
, and
H. A.
Wu
,
Modell. Simul. Mater. Sci. Eng.
14
,
423
(
2006
).
36.
J. H.
Irving
and
J. G.
Kirkwood
,
J. Chem. Phys.
18
,
817
829
(
1950
).
37.
R. J.
Hardy
,
J. Chem. Phys.
76
,
622
628
(
1982
).
38.
R. J.
Hardy
,
S.
Root
, and
D. R.
Swanson
, “
Continuum properties from molecular simulations
,” in
12th APS Topical Conference on Shock Compression of Condensed Matter—2001
(
American Institute of Physics
,
Atlanta, Georgia
,
2002
), p.
363
366
.
39.
Y.
Fu
and
A. C.
To
,
Modell. Simul. Mater. Sci. Eng.
21
,
055015
(
2013
).
40.
S.
Root
,
R. J.
Hardy
, and
D. R.
Swanson
,
J. Chem. Phys.
118
,
3161
3165
(
2003
).
41.
L. E.
Malvern
,
Introduction to the Mechanics of a Continuous Medium
(
Prentice-Hall, Inc.
,
Englewood Cliffs, New Jersey
,
1969
).
42.
M. E.
Gurtin
,
An Introduction to Continuum Mechanics
(
Academic Press, Inc.
,
San Diego, California
,
1981
).
43.
S. M.
Foiles
,
Phys. Rev. B
32
,
7685
7693
(
1985
).
44.
S. M.
Foiles
,
M. I.
Baskes
, and
M. S.
Daw
,
Phys. Rev. B
33
,
7983
7991
(
1986
).
45.
R. C.
Lincoln
,
K. M.
Koliwad
, and
P. B.
Ghate
,
Phys. Rev.
157
,
463
466
(
1967
).
46.
É. V.
Kozlov
,
L. E.
Popov
, and
M. D.
Starostenkov
,
Sov. Phys. J.
15
,
395
396
(
1972
).
You do not currently have access to this content.