This study was motivated by the recently proposed concept of remote detection of concealed radioactive materials by a focused terahertz (THz) radiation [V. L. Granatstein and G. S. Nusinovich, J. Appl. Phys. 108, 063304 (2010)]. According to this concept, a high-power THz radiation should be focused in a small spot where the field intensity exceeds the breakdown threshold. In the presence of free electrons in such a breakdown-prone volume, a THz discharge will occur there. However, this volume should be so small that in the absence of ionizing sources in its vicinity the probability to have there any free electrons is low. Then, the increased breakdown rate in a series of THz pulses would indicate the presence of hidden radioactive materials in the vicinity of the focused spot. For this concept, it is important to accurately determine the breakdown-prone volume created by a focused THz radiation. This problem is analyzed in this paper, first, for the case of a single wave beam and, then, for the case of crossing wave beams of different polarizations. The problem is studied first ignoring the diffraction spread of wave beams in the vicinity of the focal plane and, then, with the account for the diffraction spreading. Then, relations between the THz wave power, the range of such a system and the breakdown-prone volume are analyzed. Finally, the effect of the atmospheric turbulence on propagation and focusing of THz wave beams in air is considered.

1.
G. S.
Nusinovich
,
V. L.
Granatstein
,
T. M.
Antonsen
, Jr.
,
R.
Pu
,
O. V.
Sinitsyn
,
J.
Rodgers
,
A. B.
Mohamed
,
J.
Silverman
,
M.
Al-Sheikhly
, and
Y. S.
Dimant
, in
IEEE International Vacuum Electronics Conference, IVEC-2010, Monterey, CA, USA, 18–20 May
(IEEE,
2010
), p.
197
.
2.
V. L.
Granatstein
and
G. S.
Nusinovich
,
J. Appl. Phys.
108
,
063304
(
2010
).
3.
G. S.
Nusinovich
,
R.
Pu
,
T. M.
Antonsen
, Jr.
,
O. V.
Sinitsyn
,
J.
Rodgers
,
A.
Mohamed
,
J.
Silverman
,
M.
Al-Sheikhly
,
Y. S.
Dimant
,
G. M.
Milikh
,
M.
Yu. Glyavin
,
A. G.
Luchinin
,
E. A.
Kopelovich
, and
V. L.
Granatstein
,
J. Infrared Millim. Terahertz Waves
32
,
380
(
2011
).
4.
A. V.
Gurevich
,
N. D.
Borisov
, and
G. M.
Milikh
,
Physics of Microwave Discharge, Artificially Ionized Regions in the Atmosphere
(
Gordon and Breach
,
Reading, England
,
1997
).
5.
J.
Foster
,
H.
Krompholtz
, and
A.
Neuber
,
Phys. Plasmas
18
,
013502
(
2011
).
6.
J. T.
Krile
and
A. A.
Neuber
,
Appl. Phys. Lett.
98
,
211502
(
2011
).
7.
J. H.
Booske
,
R. J.
Dobbs
,
C. D.
Joye
,
C. L.
Kory
,
G. R.
Neil
,
G.-S.
Park
,
J.
Park
, and
R. J.
Temkin
,
IEEE Trans. THz Sci. Technol.
1
,
54
(
2011
).
8.
M.
Yu. Glyavin
,
A. G.
Luchinin
,
G. S.
Nusinovich
,
J.
Rodgers
,
D. G.
Kashyn
,
C. A.
Romero-Talamas
, and
R.
Pu
,
Appl. Phys. Lett.
101
,
153503
(
2012
).
9.
G. S.
Nusinovich
,
P.
Sprangle
,
C. A.
Romero-Talamas
, and
V. L.
Granatstein
,
J. Appl. Phys.
109
,
083303
(
2011
).
10.
A. G.
Litvak
, in
Applications of High-Power Microwaves
, edited by
A. V.
Gaponov-Grekhov
and
V. L.
Granatstein
(
Artech House
,
Boston-London
,
1994
).
11.
V. E.
Semenov
,
Sov. J. Plasma Phys.
10
,
328
(
1984
).
12.
A.
Yariv
,
Quantum Electronics
, 2nd ed. (
John Wiley and Sons, Inc.
,
New York
,
1975
), Sect. 6.5.
13.
H. W.
Bandel
and
A. D.
MacDonald
,
J. Appl. Phys.
40
,
4390
(
1969
).
14.
S.
Liao
,
N.
Gopalsami
,
E.
Koehl
,
T. W.
Elmer
,
A.
Heifetz
,
H.-T
Chien
, and
A.
Raptis
,
IEEE Trans. Plasma Sci.
40
,
990
(
2012
).
15.
V. I.
Tatarskii
,
The Effects of the Turbulent Atmosphere on Wave Propagation
(
National Technical Information Office, U.S. Department of Commerce
,
Springfield, VA
22161,
1971
), pp.
218
258
.
16.
S. M.
Rytov
,
Yu. A.
Kravtsov
, and
V. I.
Tatarskii
,
Principles of Statistical Radiophysics, Vol. 2: Correlation Theory of Random Processes
(
Springer Verlag
,
1988
).
17.
A. D.
Wheelon
,
Electromagnetic Scintillation: I. Geometrical Optics, and II. Weak Scattering
(
Cambridge University Press
,
Cambridge, UK
,
2001
).
18.
R. L.
Fante
, “
Electromagnetic beam propagation in turbulent media
,”
Proc. IEEE
63
,
1669
1692
(
1975
).
19.
W. B.
Miller
,
J. C.
Ricklin
, and
L. C.
Andrews
, “
Log-amplitude variance and wave structure function: A new perspective for Gaussian beams
,”
J. Opt. Soc. Am. A
10
,
661
(
1993
).
20.
L. S.
Dolin
, “
Propagation of a narrow light beam in a random medium
,”
Izv. VUZov, Radiofiz.
7
,
380
391
(
1964
) (in Russian).
21.
L. S.
Dolin
, “
Equations for the correlation functions of a wave beam in a randomly inhomogeneous medium
,”
Radiophys. Quantum Electron.
11
,
486
491
(
1968
).
22.
R. L.
Fante
, “
Range of validity of the quadratic approximation for propagation through a random distribution of large aerosol particle
,”
Appl. Opt.
21
,
9
(
1982
).
23.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions
(
National Bureau of Standards
,
1964
).
You do not currently have access to this content.