Micro electrical discharge machining (μEDM) is an atmospheric-pressure plasma-assisted technology that uses point-to-plane discharges in liquid dielectrics to remove microscopic quantities of electrically conductive materials. In this work, an innovative μEDM prototype machine was specifically designed and fabricated to produce and control single spark discharges, thus, resolving the typical limitations of (multi-discharge) commercial machines. The work analyses the type of discharge and the micro-plasma electron-density values obtained for 0.5–38 μm gap sizes, 3–10 000 μs pulse durations, 75–250 V low breakdown voltages, and 1–20 A discharge currents, using different combinations of metallic electrodes in oil and in water. Results allow fitting, for micro-scale and low voltages, an empirical law between the maximum gap-size for breakdown, the breakdown voltage, and the effective stress-time. The electron density ne is obtained by optical emission spectroscopy diagnostics of the Hα-line Stark broadening (yielding ne10161017cm3, i.e., ionization degrees of 2×105104) and by a semi-empirical resistive plasma model. The model uses the experimental values of several electrical and geometrical quantities, and of the gas pressure estimated as 60bar2kbar from measurements of the plasma mechanical action, obtained using a force sensor. The quantitative information of this phenomenological study can assist the optimization of this micro-fabrication technique.

1.
T.
Masuzawa
, “
State of the art of micromachining
,”
Ann. CIRP
49
,
473
(
2000
).
2.
K. H.
Ho
and
S. T.
Newman
, “
State of the art electrical discharge machining (EDM)
,”
Int. J. Mach. Tools Manuf.
43
,
1287
(
2003
).
3.
L.
Uriarte
,
A.
Herrero
,
A.
Ivanov
,
H.
Oosterling
,
L.
Staemmler
,
P. T.
Tang
, and
D.
Allen
, “
Comparison between microfabrication technologies for metal tooling
,”
J. Mech. Eng. Sci.
220
,
1665
(
2006
).
4.
G. W.
Trichel
, “
The mechanism of the negative point to plane corona near onset
,”
Phys. Rev.
54
,
1078
(
1938
).
5.
R.
Foest
,
M.
Schmidt
, and
K.
Becker
, “
Microplasmas, an emerging field of low-temperature plasma science and technology
,”
Int. J. Mass Spectrom.
248
,
87
(
2006
).
6.
K.
Tachibana
, “
Current status of microplasma research
,”
IEEJ T. Electr. Electr.
1
,
145
(
2006
).
7.
V.
Karanassios
, “
Microplasmas for chemical analysis: Analytical tools or research toys?
,”
Spectrochim. Acta, Part B
59
,
909
(
2004
).
8.
F.
Iza
,
G. J.
Kim
,
S. M.
Lee
,
J. K.
Lee
,
J. L.
Walsh
,
Y. T.
Zhang
, and
M. G.
Kong
, “
Microplasmas: Sources, particle kinetics, and biomedical applications
,”
Plasma Process. Polym.
5
,
322
(
2008
).
9.
D.
Mariotti
and
R. M.
Sankaran
, “
Microplasmas for nanomaterials synthesis
,”
J. Phys. D: Appl. Phys.
43
,
323001
(
2010
).
10.
P.
Ceccato
, “
Filamentary plasma discharge inside water: Initiation and propagation of a plasma in a dense medium
,” Ph.D. dissertation (
Ecole Polytechnique Palaiseau, Paris
,
2009
).
11.
A.
Starikovskiy
, “
Pulsed nanosecond discharge development in liquids with various dielectric permittivity constants
,”
Plasma Sources Sci. Technol.
22
,
012001
(
2013
).
12.
U.
Ebert
and
D. D.
Sentman
, “
Streamers, sprites, leaders, lightning: From micro-to macroscales
,”
J. Phys. D: Appl. Phys.
41
,
230301
(
2008
).
13.
J.
van Dijk
,
G. M. W.
Kroesen
, and
A.
Bogaerts
, “
Plasma modelling and numerical simulation
,”
J. Phys. D: Appl. Phys.
42
,
190301
(
2009
).
14.
A.
Descoeudres
, “
Characterization of electrical discharge machining plasmas
,” Ph.D. dissertation (
Ecole Polytechnique Federale De Lausanne, Lausanne
,
2006
).
15.
Nagahanumaiah
,
J.
Ramkumar
,
N.
Glumac
,
S.
Kapoor
, and
R.
DeVor
, “
Characterization of plasma in micro-EDM discharge using optical spectroscopy
,”
J. Manuf. Process.
11
,
82
(
2009
).
16.
K. P.
Rajurkar
,
G.
Levy
,
A.
Malshe
,
M. M.
Sundaram
,
J.
McGeough
,
X.
Hu
,
R.
Resnick
, and
A.
DeSilva
, “
Micro and nano machining by electro-physical and chemical processes
,”
Ann. CIRP
55
,
643
(
2006
).
17.
W.
An
,
K.
Baumung
, and
H.
Bluhm
, “
Underwater streamer propagation analyzed from detailed measurements of pressure release
,”
J. Appl. Phys.
101
,
053302
(
2007
).
18.
J.
Kolb
,
R.
Joshi
,
S.
Xiao
, and
K.
Schoenbach
, “
Streamers in water and other dielectric liquids
,”
J. Phys. D: Appl. Phys.
41
,
234007
(
2008
).
19.
K.
Schoenbach
,
J.
Kolb
,
S.
Xiao
,
S.
Katsuki
,
Y.
Minamitani
, and
R.
Joshi
, “
Electrical breakdown of water in microgaps
,”
Plasma Sources Sci. Technol.
17
,
024010
(
2008
).
20.
S.
Dhanik
,
S.
Joshi
,
N.
Ramakrishnan
, and
P.
Apte
, “
Evolution of EDM process modelling and development towards modelling of the micro-EDM process
,”
Int. J. Manuf. Technol. Manage.
7
,
157
(
2005
).
21.
P.
Eubank
,
M.
Patela
,
M.
Barrufet
, and
B.
Bozkurt
, “
Theoretical models of the electrical discharge machining process. III. The variable mass, cylindrical plasma model
,”
J. Appl. Phys.
73
,
7900
(
1993
).
22.
B.
Pillans
,
M.
Evensen
,
H.
Taylor
,
P.
Eubank
, and
L.
Ma
, “
Fiber optic diagnostic techniques applied to electrical discharge machining sparks
,”
J. Appl. Phys.
91
,
1780
(
2002
).
23.
J. C.
Martin
, “
Nanosecond pulse techniques
,”
Proc. IEEE
80
,
934
(
1992
).
24.
R. J.
Adler
,
Pulse Power Formulary
(
North Star Research Corporation
,
Albuquerque, NM
,
1991
), p.
26
.
25.
S. T.
Pai
and
Q.
Zhang
,
Introduction to High Power Pulse Technology
(
World Scientific Publishing
,
Singapore
,
2003
).
26.
F.
Han
,
M.
Kunieda
,
T.
Sendai
, and
Y.
Imai
,
Simulation of WEDM using Discharge Location Searching Algorithm. Initiatives of Precision Engineering at the Beginning of the Millennium
(
Kluwer Academic Publishers
,
2001
), pp.
319
323
.
27.
D. A.
Khan
and
M.
Hameedullah
, “
Effect of tool polarity on the machining characteristics in electric discharge machining of silver steel and statistical modelling of the process
,”
Int. J. Eng. Sci. Technol.
3
,
5001
(
2011
).
28.
D.
Reynaerts
,
P.-H.
Heeren
, and
H.
Van Brussel
, “
Microstructuring of silicon by electro-discharge machining (EDM)-part I: Theory
,”
Sens. Actuators, A
60
,
212
(
1997
).
29.
A.
Hamdan
,
C.
Noël
,
F.
Kosior
,
G.
Henrion
, and
T.
Belmonte
, “
Impacts created on various materials by micro-discharges in heptane: Influence of the dissipated charge
,”
J. Appl. Phys.
113
,
043301
(
2013
).
30.
Y.
Zhanbo
,
J.
Takahashi
,
N.
Nakajima
,
S.
Sano
, and
M.
Kunieda
, “
Feasibility of 3-D surface machining by dry EDM
,”
Int. J. Electr. Mach.
10
,
15
(
2005
).
31.
E.
Aligiri
,
S. H.
Yeo
, and
P. C.
Tan
, “
A new tool wear compensation method based on real-time estimation of material removal volume in micro-EDM
,”
J. Mater. Process. Technol.
210
,
2292
(
2010
).
32.
P.
Peças
and
E.
Henriques
, “
Influence of silicon powder-mixed dielectric on conventional electrical discharge machining
,”
Int. J. Mach. Tools Manuf.
43
,
1465
(
2003
).
33.
S.
Yu
,
B.
Lee
, and
W.
Lin
, “
Waveform monitoring of electric discharge machining by wavelet transform
,”
Int. J. Adv. Manuf. Technol.
17
,
339
(
2001
).
34.
C.
Miron
,
M. A.
Bratescu
,
N.
Saito
, and
O.
Takai
, “
Effect of the electrode work function on the water plasma breakdown voltage
,”
Curr. Appl. Phys.
11
,
S154
(
2011
).
35.
P. D.
Gadiraju
, “
Laminated chemical and physical micro-jet actuators based on conductive media
,” Ph.D. dissertation (
Georgia Institute of Technology, Atlanta
,
2008
).
36.
M.
Gigosos
and
V.
Cardenoso
, “
New plasma diagnosis tables of hydrogen Stark broadening including ion dynamics
,”
J. Phys. B
29
,
4795
(
1996
).
37.
A.
Singh
and
A.
Ghosh
, “
A thermo-electric model of material removal during electric discharge machining
,”
Int. J. Mach. Tools Manuf.
39
,
669
(
1999
).
38.
S.
Dhanik
and
S.
Joshi
, “
Modeling of a single resistance capacitance pulse discharge in micro-electro discharge machining
,”
ASME J. Manuf. Sci. Eng.
127
,
759
(
2005
).
39.
R.
Perez
,
H.
Rojas
,
G.
Walder
, and
R.
Flükiger
, “
Theoretical modeling of energy balance in electroerosion
,”
J. Mater. Process. Technol.
149
,
198
(
2004
).
40.
M. A.
Lieberman
and
A. J.
Lichtenberg
,
Principles of Plasma Discharges and Materials Processing
(
John Wiley
,
New York
,
2005
).
41.
Laplace database,
H.
Hasegawa
,
H.
Date
, and
M.
Shimozuma
, see http://www.lxcat.laplace.univ-tlse.fr, retrieved November
2012
.
42.
F.
Han
,
M.
Kunieda
,
T.
Sendai
, and
Y.
Imai
, “
High precision simulation of WEDM using parametric programming
,”
Ann. CIRP
51
,
165
(
2002
).
43.
M.
Klas
,
Š.
Matejcik
,
B.
Radjenovic
, and
M.
Radmilovic-Radjenovic
, “
The breakdown voltage characteristics and the secondary electron production in direct current hydrogen discharges for the gaps ranging from 1 μm to 100 μm
,”
Phys. Lett. A
376
,
1048
(
2012
).
44.
D. A.
Wetz
, “
The impact of field enhancements and charge injection on the pulsed breakdown strength of water
,” Ph.D. dissertation (
Texas Technical University, Lubbock
,
2006
).
45.
M.
Kunieda
,
B.
Lauwers
,
K. P.
Rajurkar
, and
B. M.
Schumacher
, “
Advancing EDM through fundamental insight into the process
,”
Ann. CIRP
54
,
64
(
2005
).
46.
T.
Doke
,
S.
Hayakawa
,
F.
Itoigawa
, and
T.
Nakamura
, “
Observation of scattered debris generated by pulse discharge in bubble in electrical discharge machining
,” in
Proceedings of the LEM21, 5th International Conference on Leading Edge Manufacturing in 21st Century (Japan Society of Mechanical Engineers, Osaka
,
2009
).
You do not currently have access to this content.