In this work, we investigate the bioactivity and structural properties of nanostructured bulk composites that are composed of Nb2O5 and natural hydroxyapatite (HAp) and are produced by mechanical alloying and powder metallurgy. X-ray diffraction and Raman spectroscopy data showed that the milling process followed by a heat treatment at 1000 °C induced chemical reactions along with the formation of the CaNb2O6, PNb9O25 and Ca3(PO4)2 phases. Rietveld refinement indicated significant changes in each phase weight fraction as a function of HAp concentration. These changes influenced the in vitro bioactivity of the material. XRD and FTIR analyses indicated that the composites exhibited bioactivity characteristics by forming a carbonated apatite layer when the composites were immersed in a simulated body fluid. The formed layers had a maximum thickness of 13 μm, as measured by confocal Raman spectroscopy and as confirmed by scanning electron microscopy. The results of this work suggest that the tested bulk composites are promising biomaterials for use in implants.

1.
W.
Cao
and
L. L.
Hench
,
Ceram. Int.
22
,
493
(
1996
).
3.
S.
Joschek
,
B.
Nies
,
R.
Krotz
, and
A.
Göpferich
,
Biomaterials
21
,
1645
(
2000
).
4.
T.
Miyazaki
,
H. M.
Kim
,
T.
Kokubo
,
C.
Ohtsuki
, and
T.
Nakamura
,
J. Ceram. Soc. Jpn.
109
,
929
(
2001
).
5.
H.
Matsuno
,
A.
Yokoyama
,
F.
Watari
,
M.
Uo
, and
T.
Kawasaki
,
Biomaterials
22
,
1253
(
2001
).
6.
G.
Ramíres
,
S. E.
Rodil
,
H.
Arzate
,
S.
Muhl
, and
J. J.
Olaya
,
Appl. Surf. Sci.
257
,
2555
(
2011
).
7.
Y. B.
Wang
and
Y. F.
Zheng
,
Mater. Lett.
63
,
1293
(
2009
).
8.
Y. B.
Wang
and
Y. F.
Zheng
,
Mater. Lett.
62
,
269
(
2008
).
9.
S.
Nagarajan
,
V.
Raman
, and
N.
Rajendran
,
Mater. Chem. Phys.
119
,
363
(
2010
).
10.
W. J.
Nascimento
,
T. G. M.
Bonadio
,
V. F.
Freitas
,
W. R.
Weinand
,
M. L.
Baesso
, and
W. M.
Lima
,
Mater. Chem. Phys.
130
,
84
(
2011
).
11.
H. M.
Kim
,
F.
Miyaji
,
T.
Kokubo
,
C.
Ohtsuki
,
T.
Nakamura
, and
T.
Yamamuro
,
J. Am. Ceram. Soc.
78
,
2405
(
1995
).
12.
H. M.
Kim
,
F.
Miyaji
,
T.
Kokubo
,
C.
Ohtsuki
, and
T.
Nakamura
,
Bull. Chem. Soc. Jpn.
69
,
2387
(
1996
).
13.
C.
Ohtsuki
,
T.
Kokubo
, and
T.
Yamamura
,
J. Non-Cryst. Solids
143
,
84
(
1992
).
14.
P.
Li
,
C.
Ohtsuki
,
T.
Kokubo
,
K.
Nakanishi
,
N.
Soga
,
T.
Nakamura
, and
T.
Yamamuro
,
J. Am. Ceram. Soc.
75
,
2094
(
1992
).
15.
P.
Li
,
C.
Ohtsuki
,
T.
Kokubo
,
K.
Nakanishi
,
N.
Soga
, and
A.
de Groot
,
J. Biomed. Mater. Res.
28
,
7
(
1994
).
16.
M.
Uchida
,
H. M.
Kim
,
T.
Kokubo
,
F.
Miyaji
, and
T.
Nakamura
,
J. Am. Ceram. Soc.
84
,
2041
(
2001
).
17.
Y.
Abe
,
M.
Kawashita
,
T.
Kokubo
, and
T.
Nakamura
,
J. Ceram. Soc. Jpn.
109
,
106
(
2001
).
18.
T.
Kokubo
,
H. -M.
Kim
,
M.
Kawashita
, and
T.
Nakamura
,
Z. Kardiol
90
(Suppl. 3),
86
(
2001
).
19.
H. M.
Kim
,
T.
Himeno
,
M.
Kawashita
,
T.
Kokubo
, and
T.
Nakamura
,
J. R. Soc. Interface
1
,
17
(
2004
).
20.
T.
Kokubo
,
H. M.
Kim
, and
M.
Kawashita
,
Biomaterials
24
,
2161
(
2003
).
21.
T.
Kasuga
,
H.
Kondo
, and
M.
Nogami
,
J. Cryst. Growth
235
,
235
(
2002
).
22.
I.
Notingher
,
A. R.
Boccaccini
,
J.
Jones
,
V.
Maquet
, and
L. L.
Hench
,
Mater. Charact.
49
,
255
(
2002
).
23.
W. M.
Lima
,
W. R.
Weinand
,
O. A. A.
dos Santos
,
A.
Paesano
, Jr.
, and
F. H. M.
Ortega
,
Mater. Sci. Forum
498
,
600
(
2005
).
24.
T. M.
Coelho
,
E. S.
Nogueira
,
S.
Steimacher
,
A. N.
Medina
,
W. R.
Weinand
,
W. M.
Lima
,
M. L.
Baesso
, and
A. C.
Bento
,
J. Appl. Phys.
100
,
094312
(
2006
).
25.
T.
Kokubo
and
H.
Takadama
,
Biomaterials
27
,
2907
(
2006
).
26.
J.
Rodriguez-Carvajal
,
Physica B
192
,
55
(
1993
).
27.
V. K.
Pecharsky
and
P. Y.
Zavalij
,
Fundamentals of Powder Diffraction and Structural Characterization of Materials
(
Springer Science & Business Media, Inc.
,
New York
,
2005
).
28.
I. S.
Cho
,
S. T.
Bae
,
D. K.
Yim
,
D. W.
Kim
, and
K. S.
Hong
,
J. Am. Ceram. Soc.
92
,
506
(
2009
).
29.
R. A.
Silva
,
A. S. S.
Camargo
,
C.
Cusatis
,
L. A. O.
Nunes
, and
J. P.
Andreeta
,
J. Cryst. Growth
262
,
246
(
2004
).
30.
F. D.
Hardcastle
and
I. E.
Wachs
,
Solid State Ionics
45
,
201
(
1991
).
31.
A. A.
McConnell
,
J. S.
Anderson
, and
C. N. R.
Rao
,
Spectrochim. Acta, Part A
32
,
1067
(
1976
).
32.
B. X.
Huang
,
K.
Wang
,
J. S.
Church
, and
Y. S.
Li
,
Electrochim. Acta
44
,
2571
(
1999
).
33.
S. K.
Ayudhya
,
A.
Soottitantawat
,
P.
Praserthdam
, and
C.
Satayaprasert
,
Mat. Chem. Phys.
110
,
387
(
2008
).
34.
R. G.
Carrodeguas
and
S.
De Aza
,
Acta Biomater.
7
,
3536
(
2011
).
35.
R.
Cuscó
,
F.
Guitián
,
S.
De Aza
, and
L.
Artús
,
J. Eur. Ceram. Soc.
18
,
1301
(
1998
).
36.
G.
Wang
,
F.
Meng
,
C.
Ding
,
P. K.
Chu
, and
X.
Liu
,
Acta Biomater.
6
,
990
(
2010
).
37.
C. Q.
Ning
and
Y.
Zhou
,
Biomaterials
23
,
2909
(
2002
).
38.
E.
Ajami
and
K. F.
Aguey-Zinsou
,
J. Funct. Biomater.
3
,
327
(
2012
).
39.
T.
Kokubo
,
Thermochim. Acta
280/281
,
479
(
1996
).
40.
P.
Cromme
,
C.
Zollfrank
,
L.
Müller
,
F. A.
Müller
, and
P.
Greil
,
Mater. Sci. Eng. C
27
,
1
(
2007
).
41.
L.
Müller
,
E.
Conforto
,
D.
Caillard
, and
F. A.
Müller
,
Biomol. Eng.
24
,
462
(
2007
).
42.
G. A.
Stanciu
,
I.
Sandulescu
,
B.
Savu
,
S. G.
Stanciu
,
K. M.
Paraskevopoulos
,
X.
Chatzistavrou
,
E.
Kontonasaki
, and
P.
Koidis
,
J. Biomed. Pharm. Eng.
1
,
34
(
2007
).
43.
L.
Müller
and
F. A.
Müller
,
Acta Biomater.
2
,
181
(
2006
).
44.
L.
Jonásŏvá
,
F. A.
Müller
,
A.
Helebrant
,
J.
Strnad
, and
P.
Greil
,
Biomaterials
23
,
3095
(
2002
).
45.
Y.
Han
,
D.
Chen
,
J.
Sun
,
Y.
Zhang
, and
K.
Xu
,
Acta Biomater.
4
,
1518
(
2008
).
46.
D. Q.
Wei
,
Y.
Zhou
,
D. C.
Jia
, and
Y. M.
Wang
,
Acta Biomater.
3
,
817
(
2007
).
You do not currently have access to this content.