Metal-ferroelectric-metal structures based on epitaxial Pb(Zr0.2Ti0.8)O3 thin films are prepared by pulsed laser deposition on single crystal SrTiO3 substrates ((001) orientation) with buffer SrRuO3 layer as bottom electrode. Pt, Cu, and SrRuO3 are used as top contacts. The current-voltage (I–V) measurements reveal a strong influence of the top electrode interface on the magnitude of the leakage current and the shape of the I–V characteristics. The lowest current values are obtained for top Cu and the highest for top Pt. Diode-like behavior is obtained for top Cu and Pt, but the forward and reverse biases are opposite in sign. Contrary to the case of BiFeO3 layers deposited on the same type of substrates, it was found that the diode-like behavior is not switchable with the polarization reversal although the polarization values are comparable. It is also shown that the metal-ferroelectric-metal (MFM) structure based on Pb(Zr,Ti)O3 (PZT) can be simulated and modeled as a back-to-back connection of two Schottky diodes. The diode-like behavior of the MFM structure can be induced by a slight asymmetry of the potential barriers at the electrode interfaces behaving as Schottky contacts. The study ends with a critical discussion of the MFM structures based on PZT and BiFeO3 (BFO) layers. It is shown that the switchable diode-like behavior is not uniquely determined by the polarization reversal and is not a general characteristic for MFM structures. Such behavior may be present only if the polarization induced band-bending at the interface is generating an accumulation layer at the interface. This could be possible in BiFeO3 based MFM structures due to the lower band gap compared to Pb(Zr0.2Ti0.8)O3 thin films.

1.
N.
Izyumskaya
,
Y. I.
Alivov
,
S. J.
Cho
,
H.
Morkoç
,
H.
Lee
, and
Y. S.
Kang
,
Crit. Rev. Solid State Mater. Sci.
32
,
111
202
(
2007
).
2.
A. K.
Tagantsev
and
G.
Gerra
,
J. Appl. Phys.
100
,
051607
(
2006
).
3.
L.
Pintilie
,
V.
Stancu
,
L.
Trupina
, and
I.
Pintilie
,
Phys. Rev. B
82
,
085319
(
2010
).
4.
H.
Yang
,
H. M.
Luo
,
H.
Wang
,
I. O.
Usov
,
N. A.
Suvorova
,
M.
Jain
,
D. M.
Feldmann
,
P. C.
Dowden
,
R. F.
DePaula
, and
Q. X.
Jia
,
Appl. Phys. Lett.
92
,
102113
(
2008
).
5.
T.
Choi
,
S.
Lee
,
Y. J.
Choi
,
V.
Kiryukhin
, and
S.-W.
Cheong
,
Science
324
,
63
66
(
2009
).
6.
C.
Wang
,
K.
Jin
,
Z.
Xu
,
L.
Wang
,
C.
Ge
,
H.
Lu
,
H.
Guo
,
M.
He
, and
G.
Yang
,
Appl. Phys. Lett.
98
,
192901
(
2011
).
7.
D.
Lee
,
S. H.
Baek
,
T. H.
Kim
,
J.-G.
Yoon
,
C. M.
Folkman
,
C. B.
Eom
, and
T. W.
Noh
,
Phys. Rev. B
84
,
125305
(
2011
).
8.
H. T.
Yi
,
T.
Choi
,
S. G.
Choi
,
Y. S.
Oh
, and
S.-W.
Cheong
,
Adv. Mater.
23
,
3403
3407
(
2011
).
9.
A. Q.
Jiang
,
C.
Wang
,
K. J.
Jin
,
X. B.
Liu
,
J. F.
Scott
,
C. S.
Hwang
,
T. A.
Tang
,
H. B.
Lu
, and
G. Z.
Yang
,
Adv. Mater.
23
,
1277
1281
(
2011
).
10.
S. M.
Sze
,
Physics of Semiconductor Devices
, 2nd ed. (
John Wiley & Sons
,
1981
).
11.
F.
Chen
and
A.
Klein
,
Phys. Rev. B
86
,
094105
(
2012
).
12.
B. C.
Huang
,
Y. T.
Chen
,
Y. P.
Chiu
,
Y. C.
Huang
,
J. C.
Yang
,
Y. C.
Chen
, and
Y. H.
Chu
,
Appl. Phys. Lett.
100
,
122903
(
2012
).
13.
L. A.
Delimova
,
I. V.
Grekhov
,
D. V.
Mashovets
,
S. E.
Tyaginov
,
S.
Shin
,
J. M.
Koo
,
S. P.
Kim
, and
Y.
Park
,
Appl. Phys. Lett.
87
,
192101
(
2005
).
14.
F. K.
Chai
,
J. R.
Brews
,
R. D.
Schrimpf
, and
D. P.
Birnie
,
J. Appl. Phys.
78
,
4766
4775
(
1995
).
15.
I.
Boerasu
,
L.
Pintilie
,
M.
Pereira
,
M. I.
Vasilevskiy
, and
M. J. M.
Gomes
,
J. Appl. Phys.
93
,
4776
4783
(
2003
).
16.
L. R.
Zheng
,
C. L.
Lin
, and
T. P.
Ma
,
J. Phys. D: Appl. Phys.
29
,
457
461
(
1996
).
17.
B.
Nagaraj
,
S.
Aggarwal
,
T. K.
Song
,
T.
Sawhney
, and
R.
Ramesh
,
Phys. Rev. B
59
,
16022
16027
(
1999
).
18.
Z.
Wen
,
X.
Shen
,
J.
Wu
,
D.
Wu
,
A.
Li
,
B.
Yang
,
Z.
Wang
,
H.
Chen
, and
J.
Wang
,
Appl. Phys. Lett.
96
,
202904
(
2010
).
19.
L.
Pintilie
,
C.
Dragoi
,
Y. H.
Chu
,
L. W.
Martin
,
R.
Ramesh
, and
M.
Alexe
,
Appl. Phys. Lett.
94
,
232902
(
2009
).
20.
L.
Pintilie
,
I.
Vrejoiu
,
D.
Hesse
,
G.
LeRhun
, and
M.
Alexe
,
Phys. Rev. B
75
,
104103
(
2007
).
21.
S. M.
Guo
,
Y. G.
Zhao
,
C. M.
Xiong
, and
P. L.
Lang
,
Appl. Phys. Lett.
89
,
223506
(
2006
).
22.
A.
Tsurumaki
,
H.
Yamada
, and
A.
Sawa
,
Adv. Funct. Mater.
22
,
1040
1047
(
2012
).
23.
H.
Khassaf
,
G. A.
Ibanescu
,
I.
Pintilie
,
I. B.
Misirlioglu
, and
L.
Pintilie
,
Appl. Phys. Lett.
100
,
252903
(
2012
).
24.
R.
Bouregba
,
G.
Poullain
,
B.
Vilquin
, and
G.
Le Rhun
,
J. Appl. Phys.
93
,
5583
5591
(
2003
).
25.
C.
Ge
,
K. J.
Jin
,
C.
Wang
,
H. B.
Lu
,
C.
Wang
, and
G. Z.
Yang
,
Appl. Phys. Lett
99
,
063509
(
2011
).
26.
I.
Vrejoiu
,
G.
Le Rhun
,
L.
Pintilie
,
D.
Hesse
,
M.
Alexe
, and
U.
Gösele
,
Adv. Mater.
18
,
1657
1661
(
2006
).
27.
D.
Lebeugle
,
D.
Colson
,
A.
Forget
, and
M.
Viret
,
Appl. Phys. Lett.
91
,
022907
(
2007
).
28.
See supplementary material at http://dx.doi.org/10.1063/1.4808464 for detailed TEM and AFM investigations (figures SM1 to SM3), for the evaluation of the built-in potential Vbi' from the 1/Cspec2 representation (see figure SM6), and for the estimation of the free carrier concentration from the derivative of the 1/Cspec2 representation (see figure SM7).
29.
L.
Pintilie
,
I.
Vrejoiu
,
D.
Hesse
, and
M.
Alexe
,
J. Appl. Phys.
104
,
114101
(
2008
).
30.
L.
Pintilie
,
I.
Pasuk
,
R.
Negrea
,
L. D.
Filip
, and
I.
Pintilie
,
J. Appl. Phys.
112
,
064116
(
2012
).
31.
P.
Yu
,
W.
Luo
,
D.
Yi
,
J. X.
Zhang
,
M. D.
Rossell
,
C.-H.
Yang
,
L.
You
,
G.
Singh-Bhalla
,
S. Y.
Yang
,
Q.
He
,
Q. M.
Ramasse
,
R.
Erni
,
L. W.
Martin
,
Y. H.
Chu
,
S. T.
Pantelides
,
S. J.
Pennycook
, and
R.
Ramesh
,
Proc. Natl. Acad. Sci. U.S.A.
109
,
9710
9715
(
2012
).
32.
C. G.
Duan
,
R. F.
Sabirianov
,
W. N.
Mei
,
S. S.
Jaswal
, and
E. Y.
Tsymbal
,
Nano Lett.
6
,
483
487
(
2006
).
33.
L.
Pintilie
and
M.
Alexe
,
Appl. Phys. Lett.
87
,
112903
(
2005
).
34.
J. F.
Scott
,
J. Phys.: Condens. Matter
20
,
021001
(
2008
).
35.
J. G.
Simmons
,
Phys. Rev. Lett.
15
,
967
968
(
1965
).
36.
L.
Pintilie
and
M.
Alexe
,
J. Appl. Phys.
98
,
124103
(
2005
).
37.
L.
Pintilie
,
I.
Boerasu
,
M. J. M.
Gomes
,
T.
Zhao
,
R.
Ramesh
, and
M.
Alexe
,
J. Appl. Phys.
98
,
124104
(
2005
).
38.
R.
Bouregba
,
N.
Sama
,
C.
Soyer
,
G.
Poullain
, and
D.
Remiens
,
J. Appl. Phys.
107
,
104102
(
2010
).
39.
R.
Schafranek
,
S.
Li
,
F.
Chen
,
W.
Wu
, and
A.
Klein
,
Phys. Rev. B
84
,
045317
(
2011
).
40.
F.
Chen
,
R.
Schafranek
,
S.
Li
,
W. B.
Wu
, and
A.
Klein
,
J. Phys. D: Appl. Phys.
43
,
295301
(
2010
).
41.
W. L.
Warren
,
J.
Robertson
,
D.
Dimos
,
B. A.
Tuttle
,
G. E.
Pike
, and
D. A.
Payne
,
Phys. Rev. B
53
,
3080
3087
(
1996
).
42.
H.
Lee
,
Y. S.
Kang
,
S. J.
Cho
,
B.
Xiao
,
H.
Morkoç
,
T. D.
Kang
,
G. S.
Lee
,
J.
Li
,
S. H.
Wei
,
P. G.
Snyder
, and
J. T.
Evans
,
J. Appl. Phys.
98
,
094108
(
2005
).
43.
L.
Pintilie
,
I.
Vrejoiu
,
G.
Le Rhun
, and
M.
Alexe
,
J. Appl. Phys.
101
,
064109
(
2007
).
44.
J. G.
Simmons
,
J. Phys. Chem. Solids
32
,
1987
1999
(
1971
).
45.
J. G.
Simmons
,
J. Phys. Chem. Solids
32
,
2581
2591
(
1971
).
46.
J.
Robertson
,
J. Appl. Phys.
93
,
1054
1059
(
2003
).
47.
S.
Zafar
,
R. E.
Jones
,
B.
Jiang
,
B.
White
,
P.
Chu
,
D.
Taylor
, and
S.
Gillespie
,
Appl. Phys. Lett.
73
,
175
177
(
1998
).
48.
T. P.
Juan
,
S.
Chen
, and
J. Y.
Lee
,
J. Appl. Phys.
95
,
3120
3125
(
2004
).
49.
I.
Stolichnov
,
A.
Tagantsev
,
N.
Setter
,
J. S.
Cross
, and
M.
Tsukuda
,
Appl. Phys. Lett.
75
,
1790
1792
(
1999
).
50.
C.
Ge
,
K. J.
Jin
,
C.
Wang
,
H. B.
Lu
,
C.
Wang
, and
G. Z.
Yang
,
J. Appl. Phys.
111
,
054104
(
2012
).
51.
S. J.
Clark
and
J.
Robertson
,
Appl. Phys. Lett.
90
,
132903
(
2007
).

Supplementary Material

You do not currently have access to this content.