Piezoelectric materials exhibit electromechanical coupling which has led to their widespread application for sensors, actuators, and energy harvesters. These materials possess anisotropic behavior with the shear coefficient, and have the largest electromechanical coupling coefficient. However, the shear mode is difficult to measure with existing techniques and thus has not been fully capitalized upon in recent devices. Better understanding of the full shear response with respect to the driving electric field would significantly help the design of optimized piezoelectric shear devices. Here, a simple and low cost direct measurement method based on digital image correlation is developed to characterize the shear response of piezoelectric materials and its nonlinear behavior as a function of external field. The piezoelectric shear coefficient (d15) of a commercial shear plate actuator is investigated in both bipolar and unipolar electric fields. Two different nonlinearities and hysteresis behaviors of the actuators were observed, and the relation between the driving field amplitude and the corresponding d15 coefficient is determined. Moreover, the measured transverse displacement of the plate actuator in simple shear condition is validated through a laser interferometry technique.

1.
M.
Yang
and
M.
Thompson
,
Anal. Chem.
65
,
1158
(
1993
).
2.
M.
Yang
,
M.
Thompson
, and
W. C.
Duncan-Hewitt
,
Langmuir
9
,
802
(
1993
).
3.
S.
Koganezawa
,
Y.
Uematsu
,
T.
Yamada
,
H.
Nakano
,
J.
Inoue
, and
T.
Suzuki
,
IEEE Trans. Magn.
35
,
988
(
1999
).
4.
J.
Brünahl
and
A. M.
Grishin
,
Sens. Actuators., A
101
,
371
(
2002
).
5.
M. A.
Trindade
and
C. E. B.
Maio
,
Smart Mater. Struct.
17
,
055015
(
2008
).
6.
C.
Majidi
,
M.
Haataja
, and
D.
Srolovitz
,
Smart Mater. Struct.
19
,
055027
(
2010
).
7.
B.
Ren
,
S. W.
Or
,
Y.
Zhang
,
Q.
Zhang
,
X.
Li
,
J.
Jiao
,
W.
Wang
,
D.
Liu
,
X.
Zhao
, and
H.
Luo
,
Appl. Phys. Lett.
96
,
083502
(
2010
).
8.
D.
Wang
and
N.
Liu
,
Sens. Actuators., A
167
,
449
(
2011
).
9.
M. H.
Malakooti
and
H. A.
Sodano
,
Proc. SPIE
8688
,
86881R
(
2013
).
10.
L.
Zhou
,
J.
Sun
,
X.
Zheng
,
J.
Zhao
,
S.
Peng
, and
Y.
Zhang
,
Sens. Actuators., A
179
,
185
192
(
2012
).
11.
B. P.
Baillargeon
and
S. S.
Vel
,
J. Intell. Mater. Syst. Struct.
16
,
517
(
2005
).
12.
V.
Mueller
and
Q.
Zhang
,
J. Appl. Phys.
83
,
3754
(
1998
).
13.
A.
Benjeddou
,
Mech. Adv. Mater. Struct.
14
,
263
(
2007
).
14.
S.
Li
,
W.
Cao
, and
L.
Cross
,
J. Appl. Phys.
69
,
7219
(
1991
).
15.
M. H.
Malakooti
and
H. A.
Sodano
,
Appl. Phys. Lett.
102
,
061901
(
2013
).
16.
H.
Bruck
,
S.
McNeill
,
M. A.
Sutton
, and
W.
Peters
,
Exp. Mech.
29
,
261
(
1989
).
17.
P.
Bing
,
X.
Hui-min
,
X.
Bo-qin
, and
D.
Fu-long
,
Meas. Sci. Technol.
17
,
1615
(
2006
).
18.
B.
Pan
,
K.
Qian
,
H.
Xie
, and
A.
Asundi
,
Meas. Sci. Technol.
20
,
062001
(
2009
).
19.
M. A.
Sutton
,
J. J.
Orteu
, and
H.
Schreier
,
Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications
(
Springer
,
New York
,
2009
), p.
321
.
20.
T.
Hua
,
H.
Xie
,
S.
Wang
,
Z.
Hu
,
P.
Chen
, and
Q.
Zhang
,
Opt. Laser Technol.
43
,
9
(
2011
).
21.
L. E.
Cross
, in
Ferroelectric ceramics
, edited by
N.
Setter
and
E. L.
Colla
(
Springer
,
1993
), pp.
1
85
.
22.
J.
Garcia
,
R.
Perez
,
D.
Ochoa
,
A.
Albareda
,
M.
Lente
, and
J.
Eiras
,
J. Appl. Phys.
103
,
054108
(
2008
).
23.
J.
Fialka
and
P.
Benes
, in
Proceedings of the 13th International Carpathian Control Conference (ICCC), High Tatras, Slovakia, 28–31 May
(
2012
), p.
147
.
24.
V.
Mueller
and
H.
Beige
, in
Proceedings of the Eleventh IEEE International Symposium on Applications of Ferroelectrics
(
1998
), p.
459
.
25.
A.
Masys
,
W.
Ren
,
G.
Yang
, and
B.
Mukherjee
,
J. Appl. Phys.
94
,
1155
(
2003
).
26.
R.
Perez
,
A.
Albareda
,
J. E.
Garcia
,
J.
Tiana
,
E.
Ringgaard
, and
W. W.
Wolny
,
J. Phys. D
37
,
2648
(
2004
).
You do not currently have access to this content.