We prepared a series of Bi1−xLaxFeO3 (0 ≤ x ≤ 0.2) ceramics with a sol-gel method and find that both the magnetization and dielectric constant show an abrupt anomaly near a critical field Hc, which is attributed to the destruction of the cycloidal antiferromagnetic spin structure. The critical field Hc decreases substantially from ∼20 T for the x = 0 sample [Y. F. Popov et al., JETP Lett. 57, 69 (1993)] to ∼2.8 T for the x = 0.17 sample and finally to 0 T for the x = 0.2 sample at room temperature (RT). It is also found that Hc increases with decreasing temperature. The variation of Hc with La substitution and temperature can be ascribed to the change in the magnetic anisotropy and isotropic superexchange interaction, respectively. We have also discussed the magnetodielectric effects in these samples in terms of the Ginzburg-Landau theory and the spin-phonon model. Moreover, increasing the doping level of La to 0.15 greatly improves the RT leakage-current and ferroelectric (FE) properties. A RT square-shaped FE hysteresis loop with remnant polarization (2Pr) as high as ∼64 μC/cm2 is obtained for the x = 0.15 sample. These results may be important for potential applications in BiFeO3-based magnetoelectric devices.

1.
R.
Ramesh
and
N. A.
Spaldin
,
Nature Mater.
6
,
21
(
2007
).
2.
H.
Schmid
,
J. Phys.: Condens. Matter
20
,
434201
(
2008
).
3.
W.
Prellier
,
M. P.
Singh
, and
P.
Murugavel
,
J. Phys.: Condens. Matter
17
,
R803
(
2005
).
4.
W.
Eerenstein
,
N. D.
Mathur
, and
J. F.
Scott
,
Nature (London)
442
,
759
(
2006
).
5.
J. R.
Teague
,
R.
Gerson
, and
W. J.
James
,
Solid State Commun.
8
,
1073
(
1970
).
6.
I.
Sosnowska
,
T.
Peterlin-Neumaier
, and
E.
Steichele
,
J. Phys. C
15
,
4835
(
1982
).
7.
D.
Lebeugle
,
D.
Colson
,
A.
Forget
,
M.
Viret
,
A. M.
Bataille
, and
A.
Gukasov
,
Phys. Rev. Lett.
100
,
227602
(
2008
).
8.
Y. F.
Popov
,
A. K.
Zvezdin
,
G. P.
Vorob'ev
,
A. M.
Kadomtseva
,
V. A.
Murashev
, and
D. N.
Rakov
,
JETP Lett.
57
,
69
(
1993
).
9.
C.
Tabares-Mu
,
J. P.
Rivera
,
A.
Bezinges
,
A.
Monnier
, and
H.
Schmid
,
Jpn. J. Appl. Phys.
24
,
1051
(
1985
).
10.
B.
Yu
,
M.
Li
,
Z.
Hu
,
L.
Pei
,
D.
Guo
,
X.
Zhao
, and
S.
Dong
,
Appl. Phys. Lett.
93
,
182909
(
2008
).
11.
G.
Le Bras
,
D.
Colson
,
A.
Forget
,
N.
Genand-Riondet
,
R.
Tourbot
, and
P.
Bonville
,
Phys. Rev. B
80
,
134417
(
2009
).
12.
B.
Ruette
,
S.
Zvyagin
,
A. P.
Pyatakov
,
A.
Bush
,
J. F.
Li
,
V. I.
Belotelov
,
A. K.
Zvezdin
, and
D.
Viehland
,
Phys. Rev. B
69
,
064114
(
2004
).
13.
F.
Bai
,
J.
Wang
,
M.
Wuttig
,
J.
Li
,
N.
Wang
,
A. P.
Pyatakov
,
A. K.
Zvezdin
,
L. E.
Cross
, and
D.
Viehland
,
Appl. Phys. Lett.
86
,
032511
(
2005
).
14.
J. B.
Neaton
,
C.
Ederer
,
U. V.
Waghmare
,
N. A.
Spaldin
, and
K. M.
Rabe
,
Phys. Rev. B
71
,
014113
(
2005
).
15.
C.
Ederer
and
N. A.
Spaldin
,
Phys. Rev. B
71
,
224103
(
2005
).
16.
D.
Lebeugle
,
D.
Colson
,
A.
Forget
,
M.
Viret
,
P.
Bonville
,
J. F.
Marucco
, and
S.
Fusil
,
Phys. Rev. B
76
,
024116
(
2007
).
17.
D.
Lebeugle
,
D.
Colson
,
A.
Forget
, and
M.
Viret
,
Appl. Phys. Lett.
91
,
022907
(
2007
).
18.
C.
Wang
,
K.-J.
Jin
,
Z.-T.
Xu
,
L.
Wang
,
C.
Ge
,
H.-B.
Lu
,
H.-Z.
Guo
,
M.
He
, and
G.-Z.
Yang
,
Appl. Phys. Lett.
98
,
192901
(
2011
).
19.
S.-T.
Zhang
,
L.-H.
Pang
,
Y.
Zhang
,
M.-H.
Lu
, and
Y.-F.
Chen
,
J. Appl. Phys.
100
,
114108
(
2006
).
20.
G. L.
Yuan
and
S. W.
Or
,
J. Appl. Phys.
100
,
024109
(
2006
).
21.
G. L.
Yuan
,
S. W.
Or
, and
H. L. W.
Chan
,
J. Appl. Phys.
101
,
064101
(
2007
).
22.
J.
Dho
,
X.
Qi
,
H.
Kim
,
J. L.
Macmanus-Driscoll
, and
M. G.
Blamire
,
Adv. Mater.
18
,
1445
(
2006
).
23.
Y. P.
Wang
,
L.
Zhou
,
M. F.
Zhang
,
X. Y.
Chen
,
J.-M.
Liu
, and
Z. G.
Liu
,
Appl. Phys. Lett.
84
,
1731
(
2004
).
24.
L. H.
Yin
,
B. C.
Zhao
,
J.
Fang
,
R. R.
Zhang
,
X. W.
Tang
,
W. H.
Song
,
J. M.
Dai
, and
Y. P.
Sun
,
J. Solid State Chem.
194
,
194
(
2012
).
25.
J.
Bielecki
,
P.
Svedlindh
,
D. T.
Tibebu
,
S.
Cai
,
S.-G.
Eriksson
,
L.
Börjesson
, and
C. S.
Knee
,
Phys. Rev. B
86
,
184422
(
2012
).
26.
I. O.
Troyanchuk
,
D. V.
Karpinsky
,
M. V.
Bushinsky
,
V. A.
Khomchenko
,
G. N.
Kakazei
,
J. P.
Araujo
,
M.
Tovar
,
V.
Sikolenko
,
V.
Efimov
, and
A. L.
Kholkin
,
Phys. Rev. B
83
,
054109
(
2011
).
27.
G.
Catalan
,
Appl. Phys. Lett.
88
,
102902
(
2006
).
28.
A. M.
Kadomtseva
,
Y. F.
Popov
,
A. P.
Pyatakov
,
G. P.
Vorob'ev
,
A. K.
Zvezdin
, and
D.
Viehland
,
Phase Trans.
79
,
1019
(
2006
).
29.
C. S.
Edmund
,
Rep. Prog. Phys.
13
,
83
(
1950
).
30.
J.
Geck
,
B.
Büchner
,
M.
Hücker
,
R.
Klingeler
,
R.
Gross
,
L.
Pinsard-Gaudart
, and
A.
Revcolevschi
,
Phys. Rev. B
64
,
144430
(
2001
).
31.
J. T.
Zhang
,
X. M.
Lu
,
J.
Zhou
,
H.
Sun
,
J.
Su
,
C. C.
Ju
,
F. Z.
Huang
, and
J. S.
Zhu
,
Appl. Phys. Lett.
100
,
242413
(
2012
).
32.
H.
Takei
,
T.
Suzuki
, and
T.
Katsufuji
,
Appl. Phys. Lett.
91
,
072506
(
2007
).
33.
T.
Kimura
,
S.
Kawamoto
,
I.
Yamada
,
M.
Azuma
,
M.
Takano
, and
Y.
Tokura
,
Phys. Rev. B
67
,
180401
R
(
2003
).
34.
Y.
Yang
,
J. M.
Liu
,
H. B.
Huang
,
W. Q.
Zou
,
P.
Bao
, and
Z. G.
Liu
,
Phys. Rev. B
70
,
132101
(
2004
).
35.
G.
Lawes
,
A. P.
Ramirez
,
C. M.
Varma
, and
M. A.
Subramanian
,
Phys. Rev. Lett.
91
,
257208
(
2003
).
36.
G. A.
Samara
and
P. M.
Richards
,
Phys. Rev. B
14
,
5073
(
1976
).
37.
G. L.
Yuan
,
K. Z.
Baba-Kishi
,
J. M.
Liu
,
S. W.
Or
,
Y. P.
Wang
, and
Z. G.
Liu
,
J. Am. Ceram. Soc.
89
,
3136
(
2006
).
You do not currently have access to this content.