The performance of both organic light-emitting diodes (OLEDs) and organic solar cells (OSC) depends on efficient coupling between optical far field modes and the emitting/absorbing region of the device. Current approaches towards OLEDs with efficient light-extraction often are limited to single-color emission or require expensive, non-standard substrates or top-down structuring, which reduces compatibility with large-area light sources. Here, we report on integrating solution-processed nano-particle based light-scattering films close to the active region of organic semiconductor devices. In OLEDs, these films efficiently extract light that would otherwise remain trapped in the device. Without additional external outcoupling structures, translucent white OLEDs containing these scattering films achieve luminous efficacies of 46 lm W−1 and external quantum efficiencies of 33% (both at 1000 cd m−2). These are by far the highest numbers ever reported for translucent white OLEDs and the best values in the open literature for any white device on a conventional substrate. By applying additional light-extraction structures, 62 lm W−1 and 46% EQE are reached. Besides universally enhancing light-extraction in various OLED configurations, including flexible, translucent, single-color, and white OLEDs, the nano-particle scattering film boosts the short-circuit current density in translucent organic solar cells by up to 70%.

1.
S.
Reineke
,
F.
Lindner
,
G.
Schwartz
,
N.
Seidler
,
K.
Walzer
,
B.
Lüssem
, and
K.
Leo
,
Nature
459
,
234
242
(
2009
).
2.
Y.
Sun
and
S. R.
Forrest
,
Nature Photon.
2
,
483
970
(
2008
).
3.
A.
Köhnen
,
N.
Riegel
,
J.
Kremer
,
H.
Lademann
,
D. C.
Müller
, and
K.
Meerholz
,
Adv. Mater.
21
(
8
),
879
884
(
2009
).
4.
T.-H.
Han
,
Y.
Lee
,
M.-R.
Choi
,
S.-H.
Woo
,
S.-H.
Bae
,
B. H.
Hong
,
J.-H.
Ahn
,
and T.-W.
Lee
,
Nature Photon.
6
,
105
110
(
2012
).
5.
V.
Bulovic
,
G.
Gu
,
P.
Burrows
,
S.
Forrest
, and
M.
Thompson
,
Nature
380
,
29
(
1996
).
6.
J.
Meyer
,
P.
Görrn
,
S.
Hamwi
,
H. H.
Johannes
,
T.
Riedl
, and
W.
Kowalsky
,
Appl. Phys. Lett.
93
,
73308
(
2008
).
7.
J.
Lee
,
S.
Hofmann
,
M.
Furno
,
M.
Thomschke
,
Y.
Kim
,
B.
Lüssem
, and
K.
Leo
,
Opt. Lett.
36
(
8
),
1443
1448
(
2011
).
8.
V.
Bulovic
,
V.
Khalfin
,
G.
Gu
,
P.
Burrows
,
D.
Garbuzov
, and
S.
Forrest
,
Phys. Rev. B
58
(
7
),
3730
(
1998
).
9.
K.
Neyts
,
Appl. Surf. Sci.
244
(
1
),
517
523
(
2005
).
10.
C. L.
Lin
,
T. Y.
Cho
,
C. H.
Chang
, and
C. C.
Wu
,
Appl. Phys. Lett.
88
,
81114
(
2006
).
11.
R.
Meerheim
,
M.
Furno
,
S.
Hofmann
,
B.
Lüssem
, and
K.
Leo
,
Appl. Phys. Lett.
97
(
25
),
253305
(
2010
).
12.
S.
Mladenovski
,
S.
Hofmann
,
S.
Reineke
,
L.
Penninck
,
T.
Verschueren
, and
K.
Neyts
,
J. Appl. Phys.
109
(
8
),
083114
(
2011
).
13.
H.
Sasabe
,
J.
Takamatsu
,
T.
Motoyama
,
S.
Watanabe
,
G.
Wagenblast
,
N.
Langer
,
O.
Molt
,
E.
Fuchs
,
C.
Lennartz
, and
J.
Kido
,
Adv. Mater.
22
(
44
),
5003
(
2010
).
14.
E. L.
Williams
,
K.
Haavisto
,
J.
Li
, and
G. E.
Jabbour
,
Adv. Mater.
19
,
197
202
(
2007
).
15.
Y.
Sun
,
N.
Giebink
,
H.
Kanno
,
B.
Ma
,
M.
Thompson
, and
S.
Forrest
,
Nature
440
,
908
920
(
2006
).
16.
A.
Isphording
and
M.
Pralle
,
Org. Electron.
11
(
12
),
1916
3835
(
2010
).
17.
B. C.
Thompson
and
J. M. J.
Fréchet
,
Angew. Chem., Int. Ed. Engl.
47
(
1
),
58
77
(
2008
).
18.
S.
Möller
and
S.
Forrest
,
J. Appl. Phys.
91
,
3324
(
2002
).
19.
C.
Madigan
,
M. H.
Lu
, and
J.
Sturm
,
Appl. Phys. Lett.
76
(
13
),
1650
3302
(
2000
).
20.
M.
Thomschke
,
S.
Reineke
,
B.
Lüssem
, and
K.
Leo
,
Nano Lett.
12
(
1
),
424
432
(
2012
).
21.
W. H.
Koo
,
S. M.
Jeong
,
F.
Araoka
,
K.
Ishikawa
,
S.
Nishimura
,
T.
Toyooka
, and
H.
Takezoe
,
Nature Photon.
4
(
4
),
222
448
(
2010
).
22.
Y. J.
Lee
,
S. H.
Kim
,
J.
Huh
,
G. H.
Kim
,
Y. H.
Lee
,
S. H.
Cho
,
Y. C.
Kim
, and
Y. R.
Do
,
Appl. Phys. Lett.
82
,
3779
(
2003
).
23.
J.
Feng
,
T.
Okamoto
, and
S.
Kawata
,
Opt. Lett.
30
(
17
),
2302
2306
(
2005
).
24.
S.
Mladenovski
,
K.
Neyts
,
D.
Pavicic
,
A.
Werner
, and
C.
Rothe
,
Opt. Express
17
(
9
),
7562
7632
(
2009
).
25.
B. J.
Scholz
,
J.
Frischeisen
,
A.
Jaeger
,
D. S.
Setz
, and
W.
Brütting
,
Opt. Express
20
(
102
),
A205
(
2012
).
26.
H.
Peng
,
Y.
Ho
,
X.
Yu
, and
H.
Kwok
,
J. Appl. Phys.
96
,
1649
(
2004
).
27.
M.
Fujita
,
K.
Ishihara
,
T.
Ueno
,
T.
Asano
,
S.
Noda
,
H.
Ohata
,
T.
Tsuji
,
H.
Nakada
, and
N.
Shimoji
,
Jpn. J. Appl. Phys.
44
,
3669
(
2005
).
28.
Y.-C.
Kim
and
Y.
Do
,
Opt. Express
13
(
5
),
1598
2201
(
2005
).
29.
Z.
Wang
,
Z.
Chen
,
L.
Xiao
, and
Q.
Gong
,
Org. Electron.
10
(
2
),
341
686
(
2009
).
30.
B.
Riedel
,
Y.
Shen
,
J.
Hauss
,
M.
Aichholz
,
X.
Tang
,
U.
Lemmer
, and
M.
Gerken
,
Adv. Mater.
23
(
6
),
740
745
(
2011
).
31.
C. S.
Choi
,
S. M.
Lee
,
M. S.
Lim
,
K. C.
Choi
,
D.
Kim
,
D. Y.
Jeon
,
Y.
Yang
, and
O. O.
Park
,
Opt. Express
20
(
6
),
A309
A318
(
2012
).
32.
J.
Choi
,
T.-W.
Koh
,
S.
Lee
, and
S.
Yoo
,
Appl. Phys. Lett.
100
,
233303
(
2012
).
33.
S.
Ito
,
T. N.
Murakami
,
P.
Comte
,
P.
Liska
,
C.
Grätzel
,
M. K.
Nazeeruddin
, and
M.
Grätzel
,
Thin Solid Films
516
(
14
),
4613
4619
(
2008
).
34.
E.
Garnett
and
P. D.
Yang
,
Nano Lett.
10
(
3
),
1082
1087
(
2010
).
35.
W.
Wiscombe
,
Appl. Opt.
19
(
9
),
1505
1514
(
1980
).
36.
T. C.
Rosenow
,
M.
Furno
,
S.
Reineke
,
S.
Olthof
,
B.
Lussem
, and
K.
Leo
,
J. Appl. Phys.
108
(
11
),
113113
(
2010
).
37.
D. L.
MacAdam
,
J. Opt. Soc. Am.
33
(
1
),
18
44
(
1943
).
38.
J.
Meiss
,
A.
Merten
,
M.
Hein
,
C.
Schuenemann
,
S.
Schäfer
,
M.
Tietze
,
C.
Uhrich
,
M.
Pfeiffer
,
K.
Leo
, and
M.
Riede
,
Adv. Funct. Mater.
22
,
405
414
(
2012
).
39.
Y. H.
Kim
,
C.
Sachse
,
M. L.
Machala
,
C.
May
,
L.
Müller-Meskamp
, and
K.
Leo
,
Adv. Funct. Mater.
21
,
1076
(
2011
).
You do not currently have access to this content.