The nature of magnetic ordering in the inverted spinel Co2SnO4 = [Co2+][Co2+Sn4+]O4 is investigated by measuring the temperature dependence of its magnetization (M) and ac-susceptibilities (χ′ and χ″) in different magnetic fields (H) using a superconducting quantum interference device magnetometer. The polycrystalline sample with a grain size of 3–5 μm was prepared by the solid-state route and characterized by x-ray diffraction and scanning electron microscopy. Above the ferrimagnetic Néel temperature TN = 41 K, χdc = M/H fits well with the Néel' expression for the two-sublattice model of ferrimagnetism. The ferrimagnetic ordering is suggested to result from different magnetic moments of Co2+ on the A sites (3.87 μB) and B sites (4.16 μB) and antiferromagnetic molecular field constants with magnitudes NAA = 13.6, NBB = 36.8, and NAB = 33.2. The temperature variations of χ′ and χ″ under various dc-bias fields suggest the existence of a spin-glass (SG) phase for T < TSG = 39.1 K in which only the transverse spin components are frozen below TSG. This co-existence of longitudinal ferrimagnetic order below TN = 41 K and transverse SG state below TSG = 39.1 K is suggested to result from the presence of non-magnetic Sn4+ ions on the B sites.

1.
V. G.
Harris
 et al,
J. Magn. Magn. Mater.
321
,
2035
(
2009
).
2.
P. W.
Anderson
,
Phys. Rev.
102
,
1008
(
1956
).
3.
F. K.
Lotgering
,
Philips Res. Rep.
11
,
190
(
1956
).
4.
W.
Schiessel
 et al,
Phys. Rev. B
53
,
9143
(
1996
).
5.
J. D.
Rall
,
S.
Thota
,
J.
Kumar
, and
M. S.
Seehra
,
Appl. Phys. Lett.
100
,
252407
(
2012
).
6.
M. S.
Seehra
,
V.
Singh
, and
S.
Thota
,
J. Appl. Phys.
110
,
113907
(
2011
).
7.
T.
Panmatarith
,
N.
Hayeemayang
, and
N.
Baka-Lee
,
J. Sci. Technol.
27
,
1113
(
2005
); available at http://rdo.psu.ac.th/sjstweb/journal/27-5/20-PTC-effect.pdf
8.
E.
Harmon
,
D. J.
Simkin
,
R. J.
Haddad
, and
W. B.
Muir
,
J. Phys. Colloq.
38
,
CI
131
(
1977
);
E.
Harmon
,
D. J.
Simkin
,
R. J.
Haddad
, and
W. B.
Muir
,
AIP Conf. Proc.
29
,
576
(
1976
).
9.
K.
de Strooper
,
Phys. Status Solidi A
39
,
431
(
1977
).
10.
J. K.
Srivastava
 et al,
J. Appl. Phys.
61
,
3622
(
1987
).
11.
V.
Sagredo
,
B.
Watts
, and
B.
Wanklyn
,
J. Phys. IV France
7
,
C1
279
(
1997
).
12.
13.
M.
Gabay
and
G.
Toulouse
,
Phys. Rev. Lett.
47
,
201
(
1981
).
14.
15.
E. E.
Bragg
and
M. S.
Seehra
,
Phys. Rev. B
7
,
4197
(
1973
).
16.
A. H.
Morrish
,
The Physical Principal of Magnetism
(
IEEE Press
,
2001
), Chap. 9.
17.
E. W.
Gorter
,
Phillips Res. Rep.
9
,
295
(
1954
).
18.
G.
Srinivasan
and
M. S.
Seehra
,
Phys. Rev. B
28
,
1
(
1983
).
19.
P. A.
Joy
and
S. K.
Date
,
J. Magn. Magn. Mater.
218
,
229
(
2000
).
20.
R. N.
Bhowmik
and
R.
Ranganathan
,
Phys. Rev. B
74
,
214417
(
2006
).
21.
V.
Singh
,
M. S.
Seehra
, and
J.
Bonevich
,
J. Appl. Phys.
105
,
07B518
(
2009
).
22.
J. D.
Rall
and
M. S.
Seehra
,
J. Phys.: Condens. Matter
24
,
076002
(
2012
).
23.
J. L.
Dormann
,
L.
Bessais
, and
D.
Fiorani
,
J. Phys. C
21
,
2015
(
1988
).
24.
J. O.
Andersson
,
C.
Djurberg
,
T.
Jonsson
,
P.
Svedlindh
, and
P.
Nordblad
,
Phys. Rev. B
56
,
13983
(
1997
).
25.
J. R. L.
de Almeida
and
D. J.
Thouless
,
J. Phys. A
11
,
983
(
1978
).
26.
B.
Martinez
,
X.
Obradors
,
Ll.
Balcells
,
A.
Rouanot
, and
C.
Monty
,
Phys. Rev. Lett.
80
,
181
(
1998
).
27.
S. D.
Tiwari
and
K. P.
Rajeev
,
Phys. Rev. B
72
,
104433
(
2005
).
28.
M. K.
Singh
,
R. S.
Katiyar
,
W.
Prellier
, and
J. F.
Scott
,
J. Phys.:Condens. Matter
21
,
042202
(
2009
).
29.
R. N.
Bhowmik
and
R.
Ranganathan
,
J. Magn. Magn. Mater.
248
,
101
(
2002
).
30.
R. N.
Bhowmik
,
R.
Ranganathan
, and
R.
Nagarajan
,
J. Magn. Magn. Mater.
299
,
327
(
2006
).
31.
M. S.
Seehra
,
J. C.
Dean
, and
R.
Kannan
,
Phys. Rev. B
37
,
5864
(
1988
).
32.
F.-J.
Borgermann
,
H.
Maletta
, and
W.
Zinn
,
Phys. Rev. B
35
,
8454
(
1987
).
33.
Z.
Feng
and
M. S.
Seehra
,
Phys. Rev. B
45
,
2184
(
1992
).
34.
G.
Gavoille
and
J.
Hubsch
,
J. Magn. Magn. Mater.
36
,
89
(
1983
).
You do not currently have access to this content.